Lampetti, Enrico
(2021)
Nilpotent orbits in semisimple Lie algebras.
[Laurea], Università di Bologna, Corso di Studio in
Matematica [L-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (458kB)
|
Abstract
This thesis is dedicated to the introductory study of the so-called nilpotent orbits in a semisimple complex Lie algebra g, i.e., the orbits of nilpotent elements under the adjoint action of the adjoint group Gad with Lie algebra g. These orbits have an extremely rich structure and lie at the interface of Lie theory, algebraic geometry, symplectic geometry, and geometric representation theory.
The Jacobson and Morozov Theorem relates the orbit of a nilpotent element X in a semisimple complex Lie algebra g with a triple {H,X,Y} that generates a subalgebra of g isomorphic to sl(2,C). There is a parabolic subalgebra associated to this triple that permits to attach a weight to each node of the Dynkin diagram of g. The resulting diagram is called a weighted Dynkin diagram associated with the nilpotent orbit of X. This is a complete invariant of the orbit that one can use in order to
show that there are only _nitely many nilpotent orbits in g.
The thesis is organized as follows: the first three chapters contain some preliminary material on Lie algebras (Chapter 1), on Lie groups (Chapter 3) and on the representation theory of sl(2,C) (Chapter 2). Chapter 4 and 5 are the heart of the thesis. Namely,
Jacobson-Morozov, Kostant and Mal'cev Theorems are proved in Chapter 4 and Chapter 5 is dedicated to the construction of weighted Dynkin diagrams. As an example the
conjugacy classes of nilpotent elements in sl(n,C) are described in detail and a formula for their dimension is given. In this case, as well as in the case of all classical Lie algebras, the description of the orbits can be done in terms of partitions and
tableaux.
Abstract
This thesis is dedicated to the introductory study of the so-called nilpotent orbits in a semisimple complex Lie algebra g, i.e., the orbits of nilpotent elements under the adjoint action of the adjoint group Gad with Lie algebra g. These orbits have an extremely rich structure and lie at the interface of Lie theory, algebraic geometry, symplectic geometry, and geometric representation theory.
The Jacobson and Morozov Theorem relates the orbit of a nilpotent element X in a semisimple complex Lie algebra g with a triple {H,X,Y} that generates a subalgebra of g isomorphic to sl(2,C). There is a parabolic subalgebra associated to this triple that permits to attach a weight to each node of the Dynkin diagram of g. The resulting diagram is called a weighted Dynkin diagram associated with the nilpotent orbit of X. This is a complete invariant of the orbit that one can use in order to
show that there are only _nitely many nilpotent orbits in g.
The thesis is organized as follows: the first three chapters contain some preliminary material on Lie algebras (Chapter 1), on Lie groups (Chapter 3) and on the representation theory of sl(2,C) (Chapter 2). Chapter 4 and 5 are the heart of the thesis. Namely,
Jacobson-Morozov, Kostant and Mal'cev Theorems are proved in Chapter 4 and Chapter 5 is dedicated to the construction of weighted Dynkin diagrams. As an example the
conjugacy classes of nilpotent elements in sl(n,C) are described in detail and a formula for their dimension is given. In this case, as well as in the case of all classical Lie algebras, the description of the orbits can be done in terms of partitions and
tableaux.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Lampetti, Enrico
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Lie algebras nilpotent orbits representation theory of sl(2;C)groups
Data di discussione della Tesi
23 Luglio 2021
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Lampetti, Enrico
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Lie algebras nilpotent orbits representation theory of sl(2;C)groups
Data di discussione della Tesi
23 Luglio 2021
URI
Statistica sui download
Gestione del documento: