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Introduction

This thesis is dedicated to the introductory study of the so-called nilpotent orbits in a

semisimple complex Lie algebra g, i.e., the orbits of nilpotent elements under the adjoint

action of the adjoint group Gad with Lie algebra g. These orbits have an extremely

rich structure and lie at the interface of Lie theory, algebraic geometry, symplectic ge-

ometry, and geometric representation theory. The interest in these objects has been

long-standing, ranging from Kostant’s foundational work in the 1950s and 1960s to Kro-

nheimer’s realization of nilpotent orbits as moduli spaces. At the same time, nilpotent

orbits are often studied for the sake of understanding closely associated varieties.

In the case of a linear Lie algebra, i.e., a subalgebra of gl(n,C), it is clear what a

nilpotent element is. For an abstract Lie algebra g a nilpotent element x is an element

such that ad(x) is nilpotent in gl(g). Of course, in the case of a linear Lie algebra the

two definitions coincide.

The Jacobson and Morozov Theorem relates the orbit of a nilpotent element X in a

semisimple complex Lie algebra g with a triple {H,X, Y } that generates a subalgebra of

g isomorphic to sl(2,C). There is a parabolic subalgebra associated to this triple that

permits to attach a weight to each node of the Dynkin diagram of g. The resulting

diagram is called a weighted Dynkin diagram associated with the nilpotent orbit of X.

This is a complete invariant of the orbit (see Theorem 5.9) that one can use in order to

show that there are only finitely many nilpotent orbits in g.

The classical Dynkin-Kostant classification of nilpotent orbits is given. First, one

constructs a one-to-one correspondence between nilpotent orbits and conjugacy classes

of standard triples in g. The proof that this correspondence is surjective depends on the

Jacobson-Morozov Theorem and a theorem of Kostant proves it is injective. Second, one
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2 Introduction

shows that conjugacy classes of standard triples in g are in one-to-one correspondence

with certain distinguished semisimple orbits; this uses a second conjugacy theorem, this

time due to Mal’cev.

In a sense, all these classification results are a demonstration of the magnificent

effectiveness of the representation theory of sl(2,C).

The thesis is organized as follows: the first three chapters contain some preliminary

material on Lie algebras (Chapter 1), on Lie groups (Chapter 3) and on the representation

theory of sl(2,C) (Chapter 2). Chapter 4 and 5 are the heart of the thesis. Namely,

Jacobson-Morozov, Kostant and Mal’cev Theorems are proved in Chapter 4 and Chapter

5 is dedicated to the construction of weighted Dynkin diagrams. As an example the

conjugacy classes of nilpotent elements in sl(n,C) are described in detail and a formula

for their dimension is given (see Theorem 5.17). In this case, as well as in the case of

all classical Lie algebras, the description of the orbits can be done in terms of partitions

and tableaux.



Introduzione

Questa tesi è un’introduzione allo studio delle cosiddette orbite nilpotenti di un’algebra

di Lie complessa e semisemplice g, cioè le orbite di elementi nilpotenti rispetto all’azione

del gruppo aggiunto Gad con algebra di Lie g. Queste orbite hanno una struttura es-

tremamente ricca e sono alla base della teoria di Lie, della geometria algebrica, della

geometria simplettica e della teoria geometrica delle rappresentazioni. L’interesse verso

questi oggetti è di lunga data, partendo dal lavoro fondamentale di Kostant negli anni

’50 e ’60 fino alla realizzazione delle orbite nilpotenti come spazio di moduli dovuta a

Kronheimer. Allo stesso tempo, le orbite nilpotenti sono studiate spesso per comprendere

le varietà ad esse associate.

Nel caso di un’algebra di Lie lineare, cioè di una sottoalgebra di gl(n,C), è chiaro cosa

sia un elemento nilpotente. Per un’algebra di Lie g astratta, un elemento nilpotente x è

un elemento tale che ad(x) sia nilpotente in gl(g). Naturalmente, nel caso di un’algebra

di Lie lineare le due definizioni coincidono.

Il teorema di Jacobson e Morozov mette in relazione l’orbita di un elemento nilpo-

tente X di un’algebra di Lie complessa e semisemplice g con una tripla {H,X, Y } che

genera una sottoalgebra di g isomorfa a sl(n,C). A questa tripla si può associare una

sottoalgebra parabolica che permette di attribuire un peso ad ogni nodo del diagramma

di Dynkin di g. Il diagramma che si ottiene è detto diagramma di Dynkin pesato associ-

ato all’orbita nilpotente di X. Questo è un invariante completo dell’orbita (vedi Teorema

5.9) che si può usare per dimostrare che le orbite nilpotenti di g sono finite.

Si ottiene dunque la classificazione di Dynkin-Kostant delle orbite nilpotenti. Dap-

prima, si costruisce una corrispondenza biiettiva tra le orbite nilpotenti e le classi di

coniugio delle triple standard di g. Il teorema di Jacobson-Morozov prova la suriettività
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2 Introduzione

di questa corrispondenza e un teorema di Kostant ne prova l’iniettivitá. Si prosegue

dimostrando che le classi di coniugio delle triple standard di g sono in corrispondenza

biunivoca con certe orbite semisemplici, dette distinte; per ottenere questo risultato si

usa un secondo teorema di coniugio, questa volta dovuto a Mal’cev.

In un certo senso, tutti questi risultati sono una dimostrazione della stupefacente

efficacia della teoria delle rappresentazioni di sl(2,C)

La tesi è organizzata come segue: i primi tre capitoli contengono del materiale pre-

liminare sulle algebre di Lie (Capitolo 1), sui gruppi di Lie (Capitolo 3) e sulla teoria

delle rappresentazioni di sl(2,C). Il Capitolo 4 ed il Capitolo 5 sono il cuore della tesi.

Precisamente, i teoremi di Jacobson-Morozov, di Kostant e di Mal’cev sono dimostrati

nel Capitolo 4 ed il Capitolo 5 è dedicato alla costruzione dei diagrammi di Dynkin pe-

sati. Come esempio, vengono trattate dettagliatamente le classi di coniugio di elementi

nilpotenti di sl(n,C) e viene dimostrata una formula per la loro dimensione (vedi Teo-

rema 5.17). In questo caso, come per tutte le algebre di Lie classiche, la descrizione delle

orbite può essere fatta in termini di partizioni e tableaux.



Chapter 1

Lie algebras

In this section we review some basic concepts on Lie algebras.

Definition 1.1. (Lie algebra)

A vector space g over a field K with a bilinear operation [, ] : g× g −→ g, called bracket

or commutator, is said to be a Lie algebra if the following properties are satisfied:

1. [x, x] = 0 ∀x ∈ g;

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ g (Jacobi identity).

If the commutator is trivial, i.e., [x, y] = 0 ∀x, y ∈ g, g is said commutative.

Remark 1.2. By condition 1. we have that [x, y] = − [y, x], i.e., the product is anti-

commutative. (If char K 6= 2, anticommutativity is equivalent to 1. indeed it is sufficient

to notice that [x+ y, x+ y] = 0 for every x, y ∈ g).

Remark 1.3. Using Remark 1.2, condition 2. can be rewritten as a derivation, i.e.:

[x, [y, z]] = [[x, y] , z] + [y, [x, z]] (Leibniz rule)

Remark 1.4. Lie algebras naturally arise from associative algebras endowed with a new

operation. Namely given an associative algebra A, we can define a bracket on A as

follows: [, ] : A × A −→ A, (x, y) 7→ [x, y] := xy − yx. This new operation is obviously

bilinear and satisfies condition 1.; besides an easy computation shows that the Jacobi
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4 1. Lie algebras

identity also holds. For example, gl (n,C) is the Lie algebra of n × n matrices with the

bracket induced by the standard matrices product. Equivalently, given a vector space

V , we denote by gl (V ) the Lie algebra of endomorphisms of V with the bracket induced

by the composition of endomorphisms.

Definition 1.5. (Lie subalgebra)

A Lie subalgebra of a Lie algebra g is a vector subspace W of g such that [x, y] ∈ W for

every x, y ∈ W .

Definition 1.6. (Centralizer of an element)

Let g be a Lie algebra and let x ∈ g. The centralizer of x in g is gx :=
{
y ∈ g

∣∣ [x, y] = 0
}

.

Remark 1.7. Let g be a Lie algebra and let x ∈ g, then gx is a subalgebra of g. Indeed

it is a vector subspace of g by the bilinearity of the bracket and, by the Leibniz rule, we

have that for y, z ∈ gx:

[x, [y, z]] = [[x, y] , z] + [y, [x, z]] = 0.

Definition 1.8. (Ideal)

A vector subspace I of a Lie algebra g is an ideal of g if [x, y] ∈ I ∀x ∈ I, ∀y ∈ g.

Remark 1.9. If I, J are two ideals of a Lie algebra g, then I+J, [I, J ] and I∩J are also

ideals of g. In particular, [I, J ] ⊆ I ∩ J and if the sum I + J is direct, [I, J ] ⊆ I ∩ J = 0,

i.e., I and J commute.

Example 1. (Examples of ideals)

Let g be a Lie algebra.

• 0 and g are always ideals (said trivial).

• An example of a commutative ideal is the center of a Lie algebra g, that is

Z (g) = {z ∈ g| [x, z] = 0 ∀x ∈ g} .

g is commutative if and only if Z (g) = g.

• The derived algebra of g, namely [g, g], consists of the linear combination of com-

mutators of elements in g. g is commutative if and only if [g, g] = 0.
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Example 2. If g is a Lie algebra and x ∈ g, x 6= 0, then Span {x} is a commutative Lie

subalgebra.

Let now g = gl (n,C); the subspace sl (n,C) of n× n matrices with trace equal to 0 is a

Lie subalgebra of g, indeed:

tr ([x, y]) = tr (xy)− tr (yx) = 0 for every x, y in g.

This shows in fact that [gl (n,C), gl (n,C)] ⊆ sl (n,C). Moreover, using the bracket rule

[ei,j, eh,l] = δjheil − δliehj, one can show that the equality holds. Thus we have the

following decomposition in direct sum of ideals:

gl (n,C) = sl (n,C)⊕ CI = [gl (n,C), gl (n,C)]⊕ Z (gl (n,C)) .

Definition 1.10. (Simple Lie algebras)

A Lie algebra is called simple if it is not commutative and it does not contain non-trivial

ideals.

Remark 1.11. If g is simple, then Z (g) = 0 and [g, g] = g. Indeed g is non-commutative

hence Z (g) 6= g and [g, g] 6= 0. Moreover, since the only ideals of g are trivial our claim

follows.

Example 3. We shall prove that the Lie algebra g = sl(2,K) is simple if char K 6= 2.

Let us set

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
.

Then {e, h, f} is a basis for sl(2,K) satisfying the following commutation rules:

[e, f ] = h, [h, e] = 2e, [h, f ] = −2f.

In particular, g is not commutative. We will call {e, h, f} the standard basis of sl(2,K).

Let us now show that g is simple.

Let I be an ideal of g, I 6= 0. We want to show that I = g. If t is a non-zero element

of sl(2,K), then we can write it in the form t = ae+ bh+ cf with a, b, c ∈ K, (a, b, c) 6=
(0, 0, 0). We have

[t, e] = 2be− ch, so [[t, e] , e] = −2ce. Similarly [[t, f ] , f ] = −2af.
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Therefore if a 6= 0 (or c 6= 0), then f ∈ I (or e ∈ I) and this implies [e, f ] = h ∈ I

hence e, f ∈ I, obtaining I = g. If, instead, a = c = 0, then h belongs to I and so do

the commutators of h with e and f ; it follows again I = g. We conclude that sl(2,K) is

simple.

Let us now define a particular class of Lie algebras which are the main object of our

study.

Definition 1.12. (Semisimple Lie algebra)

A Lie algebra g is said to be semisimple if it is the direct sum of simple ideals g = ⊕igi.

Remark 1.13. Definition 1.12 is one of the possible characterizations of a semisimple

Lie algebra. It is worth recalling that it is possible to define a semisimple Lie algebra

as a Lie algebra containing no solvable ideals (or, equivalently, containing no non-zero

commutative ideals). If g is a semisimple Lie algebra, then Z (g) is a commutative ideal,

so it is zero. Moreover,

[g, g] =
[
⊕i∈{1,...,n}gi,⊕i∈{1,...,n}gi

]
= ⊕i∈{1,...,n} [gi, gi] = ⊕i∈{1,...,n}gi = g,

where the second equality follows from Remark 1.9 and the third equality from Remark

1.11. Thus for a semisimple Lie algebra g we have that [g, g] = g and Z (g) = 0.

Definition 1.14. (Lie algebra homomorphism)

Let g, g′ be two Lie algebras. A linear map Φ : g 7→ g′ is called a Lie algebra homomor-

phism if Φ ([x, y]) = [Φ (x) ,Φ (y)] for every x, y ∈ g. A Lie algebra homomorphism Φ is

called isomorphism if it is bijective.

Remark 1.15. It is easy to check that if Φ : g 7→ g′ is a Lie algebra homomorphism,

then Ker (Φ) is an ideal of g and Φ (g) is a subalgebra of g′.

Definition 1.16. (Representation)

Let g be a Lie algebra and V a vector space, both over the field K. A representation of

g on V is a Lie algebra homomorphism ρ : g −→ gl(V ).

A representation is said to be finite dimensional if dim V <∞.

A subspace W of V is said stable under the representation ρ if ρ (g) (W ) ⊆ W . ρ is said

irreducible if V contains no proper stable subspaces.
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Remark 1.17. If ρ : g −→ gl(V ) is a representation of g on V and W is a stable

subspace, then ρ induces a representation on W defined by ρW (x) = (ρ (x))∣∣W .

Definition 1.18. (Completely reducible representation)

Let ρ : g −→ gl (V ) be a representation of g on V . ρ is said completely reducible if

there exist W1, . . . ,Wn stable subspaces of V such that V = W1 ⊕ . . . ⊕Wn and ρWi
is

irreducible for every i ∈ {1, . . . , n}.

Example 4. (Adjoint representation)

For x ∈ g, let us consider the map ad (x) : g −→ g, y 7→ [x, y]. This is a linear map

which is also a derivation of g by the Jacobi identity. Now we can consider ad : g −→
gl(g), x 7→ ad (x) . This is a Lie algebra homomorphism, indeed it is a linear map by the

bilinearity of the bracket and

ad ([x, y]) (z) = [[x, y] , z] = [x, [y, z]]− [y, [x, z]] = ad (x) ([y, z])− ad (y) ([x, z]) =

= ad (x) ad (y) (z)− ad (y) ad (x) (z) = [ad (x) , ad (y)] (z).

Therefore ad defines a representation of a Lie algebra on itself, called the adjoint repre-

sentation. An element lies in Ker (ad) if and only if it commutes with every x in g, i.e.,

Ker (ad) = Z (g). By definition of ad, a stable subspace of g is an ideal of g, thus a Lie

algebra g is simple if and only if dim g > 1 and its adjoint representation is irreducible.

Remark 1.19. We recall that if K is an algebraically closed field and charK = 0,

another equivalent and extremely useful characterization of a semisimple Lie algebra

is the non-degeneracy of the killing form, which is the bilinear map on g defined by

k (x, y) = tr (ad (x) · ad (y)). Using the properties of the trace one can see that the

killing form is associative, i.e., k ([x, y] , z) = k (x, [y, z]) indeed:

k ([x, y] , z) = tr (ad (x) · ad (y) · ad (z))− tr (ad (y) · ad (x) · ad (z)) =

= tr (ad (x) · ad (y) · ad (z))− tr (ad (x) · ad (z) · ad (y)) = k (x, [y, z]) .

Definition 1.20. (Reductive Lie algebra)

A Lie algebra g is said to be reductive if g = Z (g)⊕ [g, g], with [g, g] a semisimple ideal

of g.
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Example 5. We have seen in Example 2 that we can decompose gl(n,C) as a direct

sum of ideals:

gl (n,C) = sl (n,C)⊕ CI = [gl (n,C), gl (n,C)]⊕ Z (gl (n,C)) .

On can show that sl (n,C) is simple, thus gl(n,C) is reductive.

Definition 1.21. (Cartan subalgebra)

Let g be a reductive Lie algebra. A Cartan subalgebra h of g is a maximal abelian

subalgebra consisting of ad-semisimple elements.

Remark 1.22. Let us consider the pair (g, h), where g is a reductive Lie algebra and h

a Cartan subalgebra of g. Then ad (h) consists of semisimple endomorphisms of g that

commute with each other and are therefore simultaneously diagonalizable. For α ∈ h∗,

we define gα = {X ∈ g|ad (H) (X) = [H,X] = α (H)X ∀H ∈ h}. We notice that g0 is

the centralizer of h and one can demonstrate that Cg (h) = h (see [3], Chapter 8). Thus

we have that

g = h⊕

(⊕
α∈Φ

gα

)
, where Φ = {α ∈ h∗ \ {0} |gα 6= 0} . (1.1)

Decomposition (1.1) is called Cartan decomposition, and Φ is called the root system of

g. Notice that if X is an ad-semisimple element, then there exists a Cartan subalgebra

containing X. Indeed Span {X} is an abelian subalgebra consisting of semisimple ele-

ments and containing X; if it is maximal we have finished, if not we consider a bigger

subalgebra consisting of ad-semisimple elements and we argue in the same way. Since

dim g <∞, this process ends and we obtain a Cartan subalgebra containing X.

1.1 Semisimple Lie algebras

The aim of this section is to recall the general facts about complex semisimple Lie

algebras, in particular to explore the Cartan decomposition (1.1). Proofs are omitted

and can be found in [3], Chapters 8,9,14 and 18. From now on we assume that the base

field is K = C.

The restriction of the killing form k to the Cartan subalgebra h is nondegenerate, thus
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we can identify h with h∗. For every α ∈ h∗ there exists a unique element tα ∈ h such

that k (tα, h) = α (h) for every h ∈ h.

The following properties are satisfied:

1. Φ spans h∗;

2. if α ∈ Φ, then −α ∈ Φ;

3. let α ∈ Φ, xα ∈ gα, yα ∈ g−α, then [x, y] = k (x, y) tα;

4. if α ∈ Φ, then [gα, g−α] is one dimensional, with basis tα;

5. α (tα) = k (tα, tα) 6= 0, for α ∈ Φ;

6. if α ∈ Φ and xα is a non-zero element of gα, then there exists yα ∈ g−α such that

xα, yα, hα = [xα, yα] span a three dimensional subalgebra of g isomorphic to sl(2,C)

via xα 7→ e, yα 7→ f, hα 7→ h;

7. hα = 2tα
k(tα,tα)

; h−α = −hα.

Remark 1.23. By property 6. above, we have that sl(2,C) is the only three dimensional

semisimple algebra, up to isomorphism. Notice that a Lie algebra of dimension one

is commutative and a non commutative two dimensional Lie algebra g has a proper

commutative ideal spanned by [x, y], where {x, y} is a basis of g.

The following orthogonality and integrality properties hold:

a) if α ∈ Φ, then ±α are the only scalar multiples of α that lie in Φ and [gα, g−α] is one

dimensional with basis tα;

b) if α ∈ Φ, then dim gα = 1;

c) if α, β ∈ Φ, then β (hα) ∈ Z and β − β (hα)α ∈ Φ;

d) if α, β ∈ Φ, then [gα, gβ] ⊆ gα+β. Moreover if α + β ∈ Φ the equality holds;

e) g is generated, as a Lie algebra, by the root spaces gα;
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f) Let {α1, . . . , αn} ⊆ Φ be a basis of h∗ and β ∈ Φ. Then

β =
n∑
i=1

ciαi, ci ∈ Q.

One can define an ”abstract root system” and check that the root system of a semisim-

ple Lie algebra is an abstract root system. First we recall that an Euclidean space E

is a finite dimensional vector space over R with a positive definite symmetric bilinear

form (·, ·). A reflection of E is a linear map that fixes an hyperplane and sends any

vector orthogonal to that hyperplane to its opposite. A non-zero vector α determines

the reflection σα with respect to the hyperplane orthogonal to α:

σα (β) = β− < β, α > α, < β, α >:=
2 (β, α)

(α, α)
.

Reflections are isometries of the space E.

Definition 1.24. (Abstract root system)

A subset Φ of a Euclidean space E is called abstract root system if the followings are

satisfied:

(R1) Φ is finite, spans E and does not contain 0.

(R2) If α ∈ Φ, the only scalar multiples of α in Φ are ±α.

(R3) If α ∈ Φ, the reflection σα leaves Φ invariant.

(R4) If α, β ∈ Φ, then < β, α >∈ Z.

We call rank of Φ the dimension of E. We say that two root systems are isomorphic if

there exists an isomorphism φ : E −→ E ′ of the corresponding euclidean spaces such

that φ (Φ) = Φ′ and < φ (α) , φ (β) >=< α, β > for every α, β ∈ Φ.

The Weyl group of Φ is the subgroup of GL (E) generated by the reflections σα for

α ∈ Φ. Since reflections are isometries and leave Φ invariant, we can identify the Weyl

group with a subgroup of the symmetric group on
∣∣Φ∣∣ elements.
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Definition 1.25. (Base)

Let E be an euclidean space and Φ ⊂ E an abstract root system. A subset ∆ of Φ is

called a base of Φ if:

B1) ∆ is a basis of E;

B2) each root β ∈ Φ can be written as β =
∑

α∈∆ cαα with cα integer coefficients, all

nonnegative or all nonpositive.

The elements in ∆ are called simple roots.

The fact that bases exist (see [3], Chapter 10) allows a decomposition Φ = Φ+ ∪ Φ−

in positive and negative roots: a root is said to be positive (negative) if its coefficient

in B2) are all nonnegative (nonpositive). The proof of the existence of a base shows

< α, β >≤ 0 for every pair of simple roots α 6= β.

Definition 1.26. (Irreducible root system)

An abstract root system is said irreducible if it cannot be partitioned in the union of

two proper subsets such that each root of the first set is orthogonal to each root of the

second set.

One immediately checks that the notion of irreducible root system is equivalent to

the irreducibility of a base ∆, where the definition of an irreducible base is essentially

the same of the one for abstract root systems.

To a base ∆ = {α1, . . . , αn} of Φ, we can associate an n × n matrix C with integral

entries Ci,j =< αi, αj >. It is immediate to check that a root system is irreducible if and

only if C is a diagonal block matrix. Moreover Ci,i = 2(αi,αi)
(αi,αi)

= 2 and Ci,j ≤ 0 if i 6= j

due to what we noticed after the definition of a base.

We can associate a graph with a Cartan matrix: the Coxeter graph of Φ is a graph of n

vertices with the i-th joined with the j-th by < αi, αj >< αj, αi > vertices. From the

Coxeter graph we can construct another graph, called the Dynkyn diagram of Φ, adding

an arrow pointing the shortest root (i.e., the vertex associated with the shortest simple

root) when there are multiple edges between two vertices. This graph is connected if

and only if ∆ is irreducible, i.e., if and only if Φ is irreducible. The classification of root

systems is therefore reduced to that of irreducible root systems.
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A complete list of irreducible root systems consists of four infinite families An, Bn, Cn, Dn

and five special graphs E6, E7, E8, F4, G2. We saw that a root system hence, a Dynkin

diagram, is associated to a semisimple Lie algebra. The root system of a semisimple Lie

algebra is irreducible if and only if the Lie algebra is simple. Dynkin diagrams completely

determine semisimple Lie algebras.



Chapter 2

On the representations of sl(2,C)

We now give a complete description of the finite dimensional representations of the Lie

algebra sl(2,C) that will be strongly used in Chapter 3. We first study the irreducible

representations. In the whole chapter, all the representations are finite dimensional.

Definition 2.1. (g-module)

Let g be a Lie algebra. A vector space V endowed with an operation

. : g× g −→ V

(x, v) 7→ x.v

is called a g-module if the following conditions are satisfied:

for every x, y ∈ g, for every v, w ∈ V for every a, b ∈ C,

1. (ax+ by).v = a(x.v) + b(y.v)

2. x.(av + bw) = a(x.v) + b(x.w)

3. [x, y] .v = x.y.v − y.x.v

Definition 2.2. (Submodule, irreducible module)

Let V be a g-module. A subspace W of V is called a g-submodule if x.w ∈ W for every

x ∈ g, for every w ∈ W . V is said irreducible if its only submodules are 0 and V .

13
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Definition 2.3. (Homomorphism of g-modules)

Let V ,W be g-modules. A linear map f : V −→ W is a homomorphism of g-modules if

x.f (v) = f (x.v) for every x in g, for every v in V .

Remark 2.4. In Definition 2.3 we are using the same notation for, in general, different

actions of g on V and W . When V = W we mean that the action is the same.

Lemma 2.5. If f : V −→ W is a homomorphism of g-modules, then Kerf is a g-

submodule of V and Imf is a g-submodule of W .

Proof. Since f is a linear map, we only have to prove that Kerf and Imf are closed

under the multiplication by elements in g. Let x ∈ g.

If v is an element of Kerf , then f (x.v) = x.f (v) = x.0 = 0. If w is an element of Imf ,

then there exists v ∈ V such that f (v) = w, thus x.w = x.f (v) = f (x.v).

Lemma 2.6. Let f : V −→ V be a homomorphism of g-modules and λ an eigenvalue.

Then the eigenspace Vλ is a submodule of V .

Proof. Let v ∈ Vλ and x ∈ g, then f (x.v) = x.f (v) = x. (λv) = λ (x.v).

Remark 2.7. A representation of g is equivalent to a g-module, indeed:

• if ρ is a representation of g on V , then V is a g-module with x.v := ρ (x) (v);

• if V is a g-module, then ρ, defined by ρ (x) (v) = x.v, is a representation of g on

V .

Irreducible modules correspond to irreducible representations; completely reducible rep-

resentations correspond to direct sum of submodules. A homomorphism of g-modules

correspond to a map that commutes with all the elements in the image of the represen-

tation.

2.1 Irreducible representations of sl(2,C)

We will study the representations of sl(2,C) using the language of sl(2,C)-modules. Let

{e, h, f} be the standard basis of sl(2,C).



2.1 Irreducible representations of sl(2,C) 15

Let V be an sl(2,C)-module with 0 < dim V <∞. Since C is algebraically closed there

exists v 6= 0 such that h.v = λv, i.e., v is an eigenvector of h of eigenvalue λ. Let us

denote by Vλ the eigenspace of h of eigenvalue λ.

Lemma 2.8. If v ∈ Vλ, then er.v ∈ Vλ+2r and f r.v ∈ Vλ−2r.

Proof. We use induction on r:

if r = 1,

h.e.v = [h, e] .v + e.h.v = 2e.v + e. (λv) = (2 + λ) e.v

h.f.v = [h, f ] .v + f.h.v = −2f.v + f. (λv) = (−2 + λ) f.v

Suppose now that the statement is true for r = n, then

h.en+1.v = [h, e] .en.v + e.h. (en.v) = 2en+1.v + e. ((λ+ 2n) en.v) = (2 (n+ 1) + λ) en+1.v

h.fn+1.v = [h, f ] .fn.v+f.h. (fn.v) = −2fn+1.v+f. ((λ− 2n) fn.v) = (−2 (n+ 1) + λ) fn+1.v

Corollary 2.9. If v is an eigenvector of eigenvalue λ, then there exists r ∈ N such that

er.v 6= 0 and er+1.v = 0.

Proof. By Lemma 2.8, (en.v)n∈N is a sequence of zeros and eigenvectors relative to dif-

ferent eigenvalues. Since V is finite dimensional, there must be a minimum r ∈ N such

that er.v 6= 0 and ek.v = 0 for every k > r.

Let v0 = er.v and let λ′ = λ+2r, where v is an eigenvector of eigenvalue λ and r is as

in Corollary 2.9. Then v0 is called maximal weight vector. By Lemma 2.8 and the same

argument as in Corollary 2.9, there exists k ∈ N such that fk.v0 6= 0 and fk+1.v0 = 0.

Let us define vi+1 = 1
i+1
f.vi, for i = 0, . . . , k − 1 and W = Span {v0, v1, . . . , vk}.

Lemma 2.10. W is a submodule of V and dim W = k + 1.

Proof. Every vector f i.w is an eigenvector of h of eigenvalue λ′ − 2i, thus W is closed

under the action of h and the vectors w, f.w, . . . , fk.w are linearly independent, since

they are eigenvectors of different eigenvalues. Besides, W is closed under the action of

f , since f.vi = (i+ 1) vi+1. It remains to prove that W is closed under the action of e.
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This follows from the fact that e.v0 = 0 and from the relation e.vi = (λ′ − i+ 1) vi−1 for

i ≥ 1, which we prove by induction on i.

If i = 1, e.v1 = e.f.v0 = [e, f ] .v0 + f.e.v0 = h.v0 + f.0 = λ′v0. Now suppose that the

formula is true for i = n− 1, then

n (e.vn) = e. (nvn) = e.f.vn−1 = [e, f ] .vn−1+f. (e.vn−1) = h.vn−1+f.
(
(λ′ − n+ 1 + 1) fn−2

)
=

= (λ′ − 2n+ 2) vn−1 + (λ′ − n+ 2) (n− 1) vn−1 = −nvn−1 + (λ′ − n+ 2) vn−1+

+n (λ′ − n+ 2) vn−1 − (λ′ − n+ 2) vn−1 = n (λ′ − n+ 1) vn−1,

thus, e.vn = (λ′ − n+ 1) vn−1.

Theorem 2.11. ( sl(2,C) irreducible modules)

For every λ in N there exists a unique (up to isomorphism) sl(2,C) irreducible module

V (λ) of dimension λ + 1 and it has a basis {v0, v1, . . . , vλ} of eigenvectors for h that

satisfies the following conditions:

h.vi = (λ− 2i) vi, f.vi = (i+ 1) vi+1, e.vi = (λ− i+ 1) vi−1.

Proof. Using the notation above, W is a non-zero submodule of V hence if V is irre-

ducible, then W = V and dim V = k + 1.

We have that 0 = e.0 = e.vk+1 = (λ′ + 1− k − 1) vk and vk 6= 0, thus it must be λ′ = k.

The uniqueness of V (λ) up to isomorphism follows from the previous lemmas. In order to

prove the existence, we consider a space V of dimension λ+1 and a basis {v0, v1, . . . , vλ}.
We then define ρ as the linear map ρ : sl(2,C) −→ gl (V ) defined by

ρ (e) =



0 λ 0 . . . 0

0 0 λ− 1 . . . 0
...

...
...

. . .
...

0 0 . . . 0 1

0 0 . . . 0 0


, ρ (f) =



0 0 0 . . . 0

1 0 0 . . . 0

0 2 0 . . . 0
...

...
...

. . .
...

0 0 . . . λ 0


,

ρ (h) =



λ 0 0 . . . 0

0 λ− 2 0 . . . 0
...

...
...

. . .
...

0 0 . . . −λ+ 2 0

0 0 . . . 0 −λ


.
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Then we have that [ρ (e) , ρ (f)] = ρ (h) , [ρ (h) , ρ (e)] = 2ρ (e) , [ρ (h) , ρ (f)] = −2ρ (f),

thus ρ is an irreducible representation of sl(2,C) with highest weight vector v0 of weight

λ.

We will call V = V (λ) a highest weight module of weight λ.

Remark 2.12. We have an explicit decomposition of V (λ) in h-eigenspaces: every

eigenvalue is integer and differs by 2 from the previous and (or) by the following, the

relative eigenspace is one-dimensional and there is a maximal eigenvalue λ = dim V − 1.

V decomposes as follows:

V = Vλ ⊕ Vλ−2 ⊕ . . .⊕ V−λ+2 ⊕ V−λ.

2.2 Weyl’s Theorem

The study of the irreducible representations of sl(2,C) is sufficient to classify all its finite

dimensional representations. This comes from a more general result:

Theorem 2.13. (Weyl)

Let g be a semisimple Lie algebra and ρ : g −→ gl (V ) a representation of g on V , with

dim V <∞. Then ρ is completely reducible.

In order to prove this theorem, we will need some preliminary results.

Lemma 2.14. (Schur)

Let f : V −→ V be a homomorphism of g-modules. If V is irreducible, then there exists

λ ∈ C such that f = λId.

Proof. Since C is algebraically closed, f has an eigenvalue λ ∈ C. V is irreducible and

we showed that Vλ is a submodule of V , thus V = Vλ, i.e, f = λId.

As in the case of the killing form, one can show that, given a representation ρ :

g −→ gl(V ), the bilinear form defined by β (x, y) = trace (ρ (x) · ρ (y)) is a symmetric

associative bilinear form on g. Moreover if g is semisimple, β is non-degenerate. One

obtains the killing form when ρ = ad.
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Remark 2.15. If β is a bilinear non-degenerate form and {x1, . . . , xn} is a basis of g,

there exists a unique dual basis, that is a basis {y1, . . . , yn} such that β (xi, yj) = δi,j

where δ is the Dirac delta. Indeed β (·, y) is an isomorphism between g and its dual by

the non-degenerancy of the form, thus there is a unique yj in g such that β (·, yj) = δi,j.

Definition 2.16. (Casimir element)

In the notation above, the Casimir element of ρ is the endomorphism of V defined as

Cρ =
n∑
i=1

ρ (xi) · ρ (yi).

Remark 2.17. We have:

trace (Cρ) =
n∑
i=1

trace (ρ (xi) · ρ (yi)) =
n∑
i=1

β (xi, yi) = n = dim g.

Remark 2.18. We will need the following formula: let a, b, c ∈ End (V ), then

[a, b · c] = a · b · c− b · c · a = a · b · c− b · a · c+ b · a · c− b · c · a = [a, b] · c+ b · [a, c] .

Lemma 2.19. Let ρ : g −→ gl (V ) be a representation g and let {x1, . . . , xn} be a basis

of g. The Casimir element of ρ commutes with all the elements of ρ (g). In particular, if

ρ is irreducible, Cρ is a scalar, precisely Cρ = dim g
dim V

Id. In this case, the Casimir element

does not depend on the choice of a basis.

Proof. Let {y1, . . . , yn} be the dual basis of {x1, . . . , xn} and let x be an element of g.

We want to prove that [ρ (x) , Cρ] = 0. We have:

[ρ (x) , Cρ] =
n∑
i=1

([ρ (x) , ρ (xi) · ρ (yi)]) =
n∑
i=1

([ρ (x) , ρ (xi)] · ρ (yi) + ρ (xi) · [ρ (x) , ρ (yi)]) =

=
n∑
i=1

(ρ ([x, xi]) · ρ (yi) + ρ (xi) · ρ ([x, yi])).

Note that for every i ∈ {1, . . . , n} there exist unique coefficients aij, bij, j ∈ 1, . . . , n,

such that

[x, xi] =
n∑
j=1

aijxj, [x, yi] =
n∑
j=1

bijyj.
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Moreover aik = −bki, indeed by the associativity of the form we have:

aik =
n∑
j=1

aijβ (xj, yk) = β ([x, xi] , yk) = −β (xi, [x, yk]) = −
n∑
j=1

bkjβ (xi, yj) = −bki.

Thus we have that:

[ρ (x) , Cρ] =
n∑
i=1

(ρ ([x, xi]) · ρ (yi) + ρ (xi) · ρ ([x, yi])) =

=
n∑
i=1

n∑
j=1

aijρ (xj) · ρ (yi) +
n∑
i=1

n∑
j=1

bijρ (xi) · ρ (yj) = 0.

If ρ is irreducible, Cρ = λId, λ ∈ C, by Schur’s lemma. The associated matrix is a

dim V × dim V matrix with trace λ · dim V . We noticed before that Cρ has trace equal

to dim g, thus λ = dim g
dim V

.

Lemma 2.20. Let g be a semisimple Lie algebra and let ρ : g −→ gl(V ) be a representa-

tion of g on V . Then ρ (g) ⊆ sl(dim V,C). In particular, if dim V = 1, g acts trivially

on V .

Proof. In the previous chapter we have seen that if g is a semisimple Lie algebra, then

g = [g, g]. Thus, for every x in g there exist yi, zi ∈ g such that x =
∑

i [yi, zi].

Since ρ is a representation, ρ (x) = ρ (
∑

i [yi, zi]) =
∑

i [ρ (yi) , ρ (zi)] and trace (ρ (x)) =∑
i (trace (ρ (yi) · ρ (zi))− trace (ρ (zi) · ρ (yi))) = 0.

The last statement follows from the fact that if dim V = 1, sl(dim V,C) = sl(1,C) =

0.

Remark 2.21. If V and U are g-modules, we can define on Hom (V, U) a structure of

g-module as follows:

(x.f) (v) = x.f (v)− f (x.v) for x ∈ g, v ∈ V.

We now have all the tools to prove Weyl’s Theorem.

Proof of Weyl’s Theorem. Without loss of generality we can assume that ρ is injective

(if it is not, we can consider g�Kerρ that acts in the same way). The proof is organized

in three steps.
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• First step: suppose that there exists an irreducible submodule W of V of codimen-

sion 1.

Since the Casimir element Cρ : V −→ V commutes with every ρ (x), it is a homo-

morphism of g-modules, thus KerCρ is a submodule of V . We want to show that

V = W ⊕KerCρ.
V�W has dimension 1, thus g acts trivially on it by Lemma 2.20, i.e., ρ (x) maps V in

W for every x ∈ g. Since Cρ is a sum of compositions of such endomorphisms, it maps

V in W . Thus KerCρ 6= 0 and the trace of an element in ρ (g) is the same as that of

its restriction to W . In particular the Casimir element of ρ : g −→ gl(V ) is the same as

that of ρW : g −→ gl(W ). Since W is irreducible, the latter is a non-zero scalar multiple

of the identity, thus W ∩KerCρ = 0 and V = W ⊕KerCρ.

• Second step: suppose that there exists a sumbmodule W of V of codimension 1.

We argue by induction on n = dim V . If n = 1 it is trivial. Let dim V > 1. If W is

irreducible, we are in the previous case. If W is not irreducible, there exists a submodule

W ′ 6= 0 of W (which is also a submodule of V ). Thus W�W ′ is a submodule of V�W ′ of

codimension 1 and, by the inductive hypothesis, there exists a submodule W̃�W ′ of V�W
such that V�W ′ = W�W ′ ⊕ W̃�W ′. Since W̃�W ′ has dimension 1, W ′ is a submodule

of W̃ of codimension 1 and, again by induction, there exists a submodule X of W̃ such

that W̃ = W ′ ⊕X and dimX = 1. Thus V�W ′ ∼= W�W ′ ⊕X and V = W ⊕X.

• Third step: general case.

By induction on dim V . If dim V = 1 it is obvious. Let dim V > 1.

If V is irreducible, there is nothing to prove. Suppose that V is not irreducible and let

U be a non-zero submodule of V .

Consider S =

{
f ∈ Hom (V, U)

∣∣ f∣∣U = λId, λ ∈ C
}

and T =

{
f ∈ Hom (V, U)

∣∣ f∣∣U = 0

}
.

These are two subspaces of Hom (V, U) and S = T ⊕Span {h} as vector spaces, where h

is an element of S such that h∣∣U 6= 0, thus T has codimension 1 in S. Let g ∈ V, g∣∣U = λId

and let x ∈ g, then we have:

(x.g) (u) = x.g (u)− g (x.u) = x. (λu)− λx.u = 0, for every u ∈ U.
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Thus g. (S) ⊆ T and S,T are submodules of Hom (V, U). By the second step, there exists

f in Hom (V, U) such that S = T ⊕Span {f}. Eventually normalizing f , we can assume

that f∣∣U = id. By Lemma 2.20 g acts trivially on Span {f}, so f is a homomorphism of

g-modules. Indeed, for every v in V and for every x in g, 0 = x.f (v)−f (x.v). It follows

that Kerf is a submodule of V . Moreover Kerf ∩ Imf = Kerf ∩ U = 0 since f acts

as the identity on U . By the rank-nullity Theorem we have that V = U ⊕Kerf and we

can conclude applying the inductive hypothesis on both summands.

Theorem 2.22. (sl(2,C)-modules)

Let V be a finite-dimensional sl(2,C)-module. Then V decomposes into the direct sum

of highest weight modules V (λ), for some λ in N. In particular all the h-eigenvalues are

integer and V is the sum of mg (0) +mg (1) irreducible submodules, where mg (λ) is the

geometric multiplicity of the eigenvalue λ.

Proof. The first part is just Weyl’s Theorem applied to sl(2,C)-modules. The second

part follows from Theorem 2.11: every irreducible sl(2,C)-module is isomorphic to V (λ)

for some natural λ; V (λ) has eigenvalues of the same parity of λ and symmetric with

respect to zero, thus one and only one between 0 and 1 occurs as eigenvalue in V (λ).





Chapter 3

Lie groups

A Lie algebra is associated with a Lie group. We refer to [4], [5] and [6] for the results

in this chapter.

Definition 3.1. (Lie group)

A Lie group G is a topological group with the structure of a smooth manifold such that

multiplication and inversion are smooth. An analytic group is a connected Lie group.

Example 6. Let U be an open subset of Rn. A smooth vector field on U is any operator

X on smooth functions on U of the form X =
∑n

i=1 ai(x) ∂
∂xi

with ai(x) ∈ C∞(U). The

real vector space g of all smooth vector fields on U is a Lie algebra with the standard

bracket [X, Y ] = XY − Y X. This example generalizes to any smooth manifold M .

If p ∈M and X is a vector field on M , we denote by Tp (M) the tangent space of M

at p and by Xp the value of X at p. If Φ : M −→ N is a smooth map between smooth

manifolds, we write dΦp : Tp (M) −→ TΦ(p) (N) for the differential of Φ at p.

Let G be a Lie group and x ∈ G. The map Lx : G −→ G defined by y 7→ xy is called

left translation by x. If f ∈ C∞ (M ;R), we set fx = f ◦ Lx.

Definition 3.2. (Left-invariant vector field)

A vector field X on G is said left-invariant if, for any x and y in G, (dLyx−1) (Xx) = Xy.

Remark 3.3. If we consider the vector field X as an operator on smooth real-valued

functions, Definition 3.2 says that X commutes with left translations, indeed for f ∈

23
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C∞ (M ;R) we have:

(dLyx−1) (Xx) = Xy ⇔ Xx (f ◦ Lyx−1) = Xy (f)⇔ Xx (fyx−1) = Xy (f)⇔

⇔ X (fg) = (X (f))g ∀g ∈ G.

Remark 3.4. The bracket of two left-invariant vector fields is a left-invariant vector

field. Indeed, if f ∈ C∞ (M ;R), g ∈ G and X, Y are left-invariant vector fields on G, we

have:

([X, Y ])g (f) = (X (Y (f)))g − (Y (X (f)))g = X
(

(Y (f))g

)
− Y

(
(X (f))g

)
=

= XY (fg)− Y X (fg) = [X, Y ] (fg) .

Theorem 3.5. (Lie algebra of a Lie group)

Let G be a Lie group. The map

ψ : {left invariant vector fields on G} −→ T1 (G)

X 7→ X1

is a real vector space isomorphism. In particular, g = T1 (G) becomes a Lie algebra with

the bracket induced by ψ and it is called the Lie algebra of the Lie group G.

Proof. ψ is clearly linear, thus it is sufficient to show that it is invertible. The map defined

by v 7→ X, where v ∈ T1 (G) and Xf (x) := v (Lx−1 · f) (with Lx−1 · f (y) = f (xy)) is

the inverse of ψ.

Definition 3.6. An analytic subgroup H of a Lie group G is a subgroup of G with the

structure of analytic group such that the inclusion mapping is smooth and everywhere

regular.

If g and h are the Lie algebras of G and H respectively, then the differential of

the inclusion at 1 carries h to a Lie subalgebra of g and it is one-to-one, thus we can

identify h with its image. The correspondence between analytic subgroups of G and Lie

subalgebras of g is bijective.

Let Φ : G −→ H be a smooth homomorphism between Lie groups and let dΦx : g −→ h
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be the differential at x ∈ g. Then the following property holds: if X is a left-invariant

vector field on G and Y is the left invariant vector field on H such that Y1 = (dΦ)1 (X1),

we have

(dΦ)x (Xx) = YΦ(x) for all x ∈ G. (3.1)

Lemma 3.7. dΦ1 is a Lie algebra homomorphism.

Proof.

(dΦ1) ([X1, X
′
1]) = (dΦ1) ([X,X ′]1) = [Y, Y ′]1 = [Y1, Y

′
1 ] = [dΦ1 (X1) , dΦ1 (X ′1)] .

Remark 3.8. If G is connected, Φ is uniquely identified by dΦ.

Let G be an analytic group and let G̃ be its universal covering, with covering map

e. Let 1̃ be an element in e−1 (1), then there exists a unique multiplication on G̃ that

makes G̃ an analytical group in such a way that e is a group homomorphism and 1̃ is

the identity in G̃. e is a smooth homomorphism and the Lie algebras of G and G̃ are

isomorphic via de1. G̃ is called the simply connected covering group of G.

Moreover if G and H are analytic groups, with G simply connected, and φ : g −→ h

is a Lie algebra homomorphism between their Lie algebras, then there exists a smooth

homomorphism Φ : G −→ H such that dΦ1 = φ.

We want now to construct a map from the Lie algebra g of G to G. In order to do this,

we need the one dimensional additive group R; its Lie algebra τ is commutative and it is

generated by
(
d
dt

)
0
. Let now G be an analytic group with Lie algebra g and X an element

in g. We define a Lie algebra homomorphism by requiring that
(
d
dt

)
0

maps to X. Since R
is simply connected, there exists a smooth homomorphism expX : R −→ G, t 7→ exp (tX)

that lifts up the Lie algebra homomorphism to the Lie groups.

Set c (t) = exp (tX) and let
(
d
dt

)
and X̃ be the left-invariant vector fields on R and G,

respectively, that extend
(
d
dt

)
0

and X. Since exp is a group homomorphism, we have

c (0) = 1. By Equation (3.1), we have that (dc)t̄
(
d
dt

)
t̄

= X̃c(t̄). Let us now compute the
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left side on a function f ∈ C∞ (G;R):

(dc)t̄

(
d

dt

)
t̄

f =
d

dt
(f ◦ c (t))∣∣t=t̄ =

d

dt
(f (exp (tX)))∣∣t=t̄ ,

thus we have:

X̃f (exp (tX)) =
d

dt
(f (exp (tX))) . (3.2)

The flux given by (t,X) 7→ exp (tX) is smooth, thus the map exp : g −→ G, X 7→
expX is smooth. Moreover it is locally invertible about the origin. This is the exponential

map for G. The exponential map satisfies the following property, that will turn out to

be helpful in the next section: if Φ : G −→ H is a Lie group homomorphism, then

expH ◦ dΦ1 = Φ ◦ expG. (3.3)

3.1 Adjoint representation of a Lie group on its Lie

algebra

A Lie group G naturally acts on its Lie algebra g via the so-called ”adjoint action”. This

section is dedicated to the study of this action.

Theorem 3.9. Let G be a Lie group with Lie algebra g. If X is in g and X̃ denotes the

corresponding left-invariant vector field, and if f ∈ C∞ (G;R), then(
X̃nf

)
(g exp (tX)) =

dn

dtn
(f (g exp (tX))) for g in G.

Proof. For g = 1 it is sufficient to iterate the formula in Equation (3.2). The general

case follows from the left-invariance of X̃, after replacing f with fg.

Corollary 3.10. Let G be a Lie group with Lie algebra g. If X is in g and X̃ denotes

the corresponding left-invariant vector field, and if f ∈ C∞ (G;R), then

X̃f (g) =
d

dt
(f (g exp (tX)))∣∣t=0

Proof. Recalling that expX (0) = 1, it is sufficient to apply Theorem 3.9 with n = 1 and

t = 0.
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The adjoint representation of a Lie group on its lie algebra is defined as follows.

Let G be a Lie group with Lie algebra g. Fix an element g in G and consider the

smooth isomorphism Φg : G −→ G, Φg (x) = gxg−1. The corresponding isomorphism

dΦg
1 : g −→ g is denoted by Ad (g). By Equation (3.3) we have that:

exp (Ad (g)X) = g (expX) g−1. (3.4)

Relation (3.4) and the fact that exp has a smooth inverse in a neighborhood of the

identity in G, imply that the map

g 7→ Ad(g)

is smooth from a neighborhood of 1 in G into GL (g). Since Φg1 ◦Φg2 = Φg1g2 , using the

chain rule for differentials, we obtain Ad (g1) ◦Ad (g2) = Ad (g1g2), thus the smoothness

is valid everywhere on G. Therefore we proved the following result:

Theorem 3.11. If G is a Lie group and g is its Lie algebra, then Ad is a smooth

homomorphism from G into GL (g).

Definition 3.12. (Adjoint representation)

Let G be a Lie group with Lie algebra g. Ad is called the adjoint representation of G on

g.

Definition 3.13. (Complex Lie group)

A complex Lie group is a Lie group G possessing a complex analytic structure such that

multiplication and inversion are holomorphic.

Remark 3.14. For such a group the complex structure induces a multiplication-by-i

mapping in the Lie algebra of g = T1 (G) such that g becomes a Lie algebra over C.

Every left-invariant vector field has holomorphic coefficients and exp is a holomorphic

mapping.

To a complex Lie algebra g we can associate a connected complex Lie group, called

the adjoint group Gad.

Definition 3.15. The group of automorphisms of g generated by the elements exp(ad(x)),

with x ∈ g is called the adjoint group Gad of g : Gad := Ad (G).
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Remark 3.16. If G is connected then the kernel of the adjoint representation of G on g

is the center Z(G) of G. More generally the kernel of the adjoint map is the centralizer

of the identity component G0 of G, hence

Gad
∼= G�ZG0 .

Remark 3.17. Gad is the connected subgroup of GL (g) with Lie algebra ad (g).

The theory of covering groups tells us that, given a Lie algebra g, there exists a simply

connected complex Lie group Gsc with Lie algebra g, and every other connected group G

with Lie algebra g is a quotient of Gsc by a finite central subgroup. In particular, there

are finitely many such G; Gad is the smallest group with Lie algebra g, while Gsc is the

largest.

We shall now compute the differential of Ad, that will turn out to be ad.

Lemma 3.18. Let G be a Lie group with Lie algebra g. If X and Y are in g, then

a) exp (tX) exp (tY ) = exp
{
t (X + Y ) + 1

2
t2 [X, Y ] +O (t3)

}
, as t→ 0;

b) exp (tX) exp (tY ) (exp (tX))−1 = exp {tY + t2 [X, Y ] +O (t3)}, as t→ 0.

Proof. See [5], Section 1.10.

In order to compute the differential of Ad, we need to develop a theory on linear

Lie groups, that is itself interesting and makes more explicit the description of the Lie

algebra of a linear Lie group.

3.2 Linear Lie groups

Definition 3.19. (Closed linear group)

A closed linear group is a closed subgroup G of nonsingular real or complex matrices.

Definition 3.20. (Linear Lie algebra)

Let G be a closed linear group. The linear Lie algebra of G is

g =
{
c′ (0)

∣∣ c : R C∞−→ G, c (0) = 1
}
.
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The following lemma justifies Definition 3.20.

Lemma 3.21. Let G be a closed linear group of GL(n,R) or GL(n,C). The linear Lie

algebra g of G is a Lie algebra.

Proof. We begin by showing that g is a vector subspace of Mn(R) (possibly the whole

Mn(R)). Let λ ∈ R, v, w ∈ g and let c, d be curves in G as in Definition 3.20

such that c′ (0) = v and d′ (0) = w. By the linearity of the derivative, we have

that λv = λc′ (0) = (λc)′ (0) ∈ g. By the chain rule, v + w = c′ (0) + d′ (0) =

c′ (0) d (0) + c (0) d′ (0) = (cd)′ (0) ∈ g.

Let us now show that [v, w] = vw − wv ∈ g. For every g ∈ G, Adlin (g)w := gwg−1 ∈
g, since it is the derivative in zero of the curve gd (t) g−1; in particular g contains

Adlin (c (t))w for every t ∈ R. Since g is a vector subspace, it is closed. Thus g con-

tains Adlin(c(t+h))w−Adlin(c(t))w
h

and the limit for h → 0, i.e., d
dt

(Adlin (c (t))w) ∈ g. An

easy calculation shows that d
dt

(
c (t)−1) = −c (t)−1 c′ (t) c (t)−1 and using Leibniz rule for

derivative, we obtain:

d

dt
(Adlin (c (t))w) ∈ g = c′ (t)wc (t)−1 − c (t)w (t)−1 c′ (t) c (t)−1 .

For t = 0, we have [v, w] = d
dt

(Adlin (c (t))w)∣∣t=0
∈ g.

The exponential map for matrices is the map defined by

eA :=
∞∑
n=0

1

n!
An.

Using a matrix norm, one can show that this series always converge. With essentially

the same proof for the complex exponential function, one can show that eA+B = eAeB

if A and B commute; since e0 = 1 we have that eA is always invertible and its inverse

is e−A. The matrix exponential function is enough to describe the linear Lie algebra g.

This is the content of the following theorem:

Theorem 3.22. If G is a closed linear group and g is its linear Lie algebra, then the

matrix exponential function carries g into G. Consequently

g =
{
A ∈ gl(n,C)

∣∣ etA is in G for all t ∈ R
}
.
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This theorem can be shown directly, but it will be an obvious consequence of the next

results, namely, we will show that the linear Lie algebra of a linear group G is isomorphic

to the Lie algebra of G and that the exponential map described in the previous section

coincide with the matrix exponential function under this identification.

Corollary 3.23. The linear Lie algebra of GL(n,C) is gl(n,C).

Proof. We have already pointed out that eA is invertible for every A ∈ gl(n,C), thus

etX ∈ GL(n,C) for every t ∈ R and X ∈ gl(n,C). We conclude by Theorem 3.22.

Remark 3.24. Theorem 3.22, together with the Inverse Function Theorem, can be used

to prove the following. A closed linear group G with its relative topology has a natural

structure of Lie group such that:

• the real and imaginary part of each entry function are smooth;

• every smooth function from a smooth manifold M to GL(n,C) that takes values

in G is smooth as function from M to G.

Moreover dim g = dim G. (See [5], Section 10.1).

Theorem 3.25. Let G be a closed linear group of n× n matrices, denote by g1 the Lie

algebra of G and by g2 its linear Lie algebra. Then the map µ : g1 −→ g2 given by

µ (X)ij = X1 (Re eij) + iX1 (Im eij) with eij (A) = Aij

is a Lie algebra isomorphism.

Proof. In order to avoid a heavy notation, we extend the definition of X ∈ g1 to complex-

valued function as Xf := X (Re f) + iX (Im f). The Leibniz rule for differentiation is

still valid.

First, we prove that µ is a Lie algebra homomorphism. We have:

eij ◦ Lx (y) = eij (xy) =
n∑
k=1

eik (x) ekj (y).

Applying X ∈ g1 we obtain:

Xeij (x) = X1 (eij ◦ Lx) = X1

(
n∑
k=1

eik (x) ekj

)
=

n∑
k=1

eik (x)X1ekj =
n∑
k=1

eik (x)µ (X)kj.
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If also Y ∈ g1, then

Y Xeij (x) = Y1 ((Xeij) ◦ Lx) = Y1

(
n∑

k,l=1

eil (x) elk (y)µ (X)kj

)
=

n∑
k,l=1

eil (x)µ (Y )lk µ (X)kj.

For x = 1, eil (x) = δil where δil is the Kronecker delta, thus

Y Xeij (1) =
n∑
k=1

µ (Y )ik µ (X)kj = (µ (Y )µ (X))ij .

Reversing the roles of X and Y we finally have:

µ ([X, Y ])ij = ([X, Y ]eij) (1) = XY eij (1)−Y Xeij (1) = (µ (X)µ (Y ))ij−(µ (Y )µ (X))ij =

= [µ (X) , µ (Y )]ij,

i.e., µ is a Lie algebra homomorphism.

Our next goal is to show that g2 ⊆ Imµ. Let A ∈ g2 and choose a curve c (t) in G with

c′ (0) = A. Put

Xf (x) =
d

dt
(f (xc (t)))∣∣t=0

.

X is a left-invariant vector field, indeed:

X (fg) (x) =
d

dt
(f (gxc (t)))∣∣t=0

= (Xf)g (x) .

Moreover

µ (X)ij = X1eij = Xeij (1) =
d

dt
(eij (c (t)))∣∣t=0

=
d

dt

(
c (t)ij

)∣∣t=0
= c′ (0)ij = Aij,

thus g2 ⊆ Imµ. This allow us to complete the proof, indeed by Remark 3.24 we have:

dim g1 = dim G = dim g2 ≤ dim (Imµ) ≤ dim (Domµ) = dim g1,

and equality must hold throughout. µ is therefore an isomorphism.

Remark 3.26. The proof shows what µ−1 maps a matrix A ∈ g2 to the left-invariant

vector field X defined by Xf (x) = d
dt

(f (x c (t)))∣∣t=0
.

We shall now go deeper in the correspondence between the Lie algebra of a Lie group

and its linear Lie algebra, in order to explicit how to compute differentials at the level

of linear Lie algebras.
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Lemma 3.27. Let G be a closed linear group and let c (t) be a smooth curve in G with

c (0) = 1. If µ is the isomorphism of Theorem 3.25, then we have

µ

(
dc0

(
d

dt

))
= c′ (0) .

Proof. By definition of µ we have:

µ

(
dc0

(
d

dt

))
ij

= dc0

(
d

dt

)
(eij) =

d

dt

(
c (t)ij

)∣∣t=0
= c′ (0)ij .

Theorem 3.28. Let Φ : G −→ H be a smooth homomorphism between closed linear

group and let µG and µH be the corresponding Lie algebra isomorphisms of Theorem

3.25. Let X be in the Lie algebra of G and put Y = (dΦ)1 (X). If c (t) is a smooth curve

in G with c (0) = 1 such that µG (X) = c′ (0), then µH (Y ) = d
dt

Φ (c (t))∣∣t=0
.

Proof. By lemma 3.27, X = µ−1
G (c′ (0)) = µ−1

G

(
µ
(
dc0

(
d
dt

)))
= dc0

(
d
dt

)
. Thus we have:

µH (Y ) = µH ((dΦ)1 (X)) = µH

(
(dΦ)1 (dc0)

(
d

dt

))
= µH

(
d (Φ ◦ c)0

(
d

dt

))
,

and applying Lemma 3.27 again, we can identify the right side with d
dt

Φ (c (t))∣∣t=0
.

We are now ready to prove that the exponential map is the matrix exponential func-

tion under the identification of the Lie algebra of a Lie group with its linear Lie algebra.

Theorem 3.29. Let G be a closed linear group of n×n matrices and let g its linear Lie

algebra. If the exponential map is regarded as carrying g to G, then it is given by the

exponential matrix function.

Proof. We first consider the case G = GL(n,C). Let X be in the Lie algebra of G and

µ (X) the correspondent element in g; let X̃ the left-invariant vector field with X. By

Equation (3.2), with f = eij, we have

d

dt

(
exp (tX)ij

)
= X̃eij (exp (tX)) =

n∑
k=1

eik (exp (tX))µ (X)kj,



3.2 Linear Lie groups 33

i.e., the smooth curve c (t) = (exp (tX)) satisfy the differential equation

c′ (t) = c (t)µ (X) , with c (0) = 1

that has unique solution c (t) = etµ(X).

For the general case of a closed Lie group G it is sufficient to apply Theorem 3.28 to the

inclusion map i : G −→ GL(n,C).

Remark 3.30. Let G be a closed linear group, then we can consider X and g in (3.4)

as matrices and we can think of exp as the usual exponential of matrices. If we replace

X with tX, differentiate and set t = 0, we see that Ad(g)(X) is given by the element

gXg−1 in g.

Corollary 3.31. Let G be an analytic group and Φ : G −→ GL(n,C) a smooth homo-

morphism. If we identify the Lie algebra of GL(n,C) with gl(n,C), then Φ ◦ expg can be

computed as edΦ.

Proof. It is just the formula in Equation (3.3) with expGL(n,C) identified with the matrix

exponential function.

We are now ready to prove that the differential of Ad is ad.

Theorem 3.32. Let G be a Lie group with Lie algebra g. The differential of Ad : G −→
GL (g) is ad : g −→ gl (g), where the Lie algebra of GL (g) has been identified with the

Lie algebra gl (g).

Proof. Let L : g −→ gl (g) be the differential of Ad. By Lemma 3.18 and Equation (3.4),

for X, Y ∈ g we have:

Ad (exp (tX)) tY = tY + t2 [X, Y ] +O
(
t3
)

as t→ 0.

Dividing by t we obtain Ad (exp (tX))Y = Y + t [X, Y ] +O (t2) as t→ 0; differentiating

and putting t = 0 we get

L (X)Y = [X, Y ] = ad (X) (Y ) .

Therefore L = ad.
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Remark 3.33. In the special case of Φ = Ad in Corollary 3.31, we have thatAd (expX) =

ead(X).

We end this section by showing that the linear Lie algebra of SL(n,C) is sl(n,C).

We will need an easy result about the matrix exponential function.

Lemma 3.34. Let A ∈ gl(n,C), then det
(
eA
)

= etrace(A).

Proof. If T is upper triangular, then eT is upper triangular with eTii = eTii where in the

left side e is the matrix exponential function, while in the left side it is the complex

exponential; then we have:

det
(
eT
)

=
n∏
k=1

eTii = e
∑n
i=1 e

Tii = etrace(T ).

Let now analyze the general case. If A ∈ gl(n,C), then there exists X ∈ GL(n,C) such

that A = XTX−1 with T upper triangular; thus

det
(
eA
)

= det
(
eXTX

−1
)

= det
(
XeTX−1

)
= det

(
eT
)

= etrace(T ) = etrace(XTX
−1) = etrace(A).

Theorem 3.35. The linear Lie algebra of SL(n,C) is sl(n,C).

Proof. By Theorem 3.22, the linear Lie algebra of SL(n,C) consists of matrices X such

that det
(
etX
)

= 1 for every t ∈ R; by Lemma 3.34, this is possible if and only if

trace (X) = 0, thus if and only if X ∈ sl(n,C).

Remark 3.36. The adjoint group of SL(n,C) is SL(n,C)ad = PSL(n,C), where

PSL(n,C) := SL(n,C)�Z with Z the center of SL(n,C).



Chapter 4

Nilpotent orbits

The main goal of this thesis is the classification of the nilpotent orbits of a complex

semisimple Lie algebra under the adjoint action.

Definition 4.1. (Nilpotent and semisimple elements)

Let g be a semisimple Lie algebra and let x ∈ g. We say that x is a nilpotent (semisimple)

element of g if ad (x) is a nilpotent (semisimple) endomorphism of g. We might refer to

such x as an ad-nilpotent (ad-semisimple) element of g.

Let Aut (g) =
{

Φ ∈ GL (g)
∣∣ [Φ (X) ,Φ (Y )] = Φ ([X, Y ]) , ∀X, Y ∈ g

}
be the auto-

morphisms group of g. For every Φ in Aut (g) and X in g, we have that:

adΦ(X) (Y ) = [Φ (X) , Y ] = [Φ (X) ,Φ (Φ−1 )Y ))] = Φ ([X,Φ−1 (Y )]) = Φ · adX · Φ−1 (Y )

for every Y in g, i.e.,

adΦ(X) = Φ · adX · Φ−1 (4.1)

From Equation (4.1), we have that an element X ∈ g is nilpotent (semisimple) if and only

if Φ (X) is nilpotent (semisimple) for every Φ in Aut (g). Since Gad ⊆ Aut(g), X ∈ g is

nilpotent (semisimple) if and only if every element in its orbit is nilpotent (semisimple).

Remark 4.2. We noticed in Chapter 1 that for a semisimple Lie algebra g the adjoint

map is injective. The image of ad lies in

Der (g) = {δ ∈ End (g) |δ ([x, y]) = [δ (x) , y] + [x, δ (y)] for every x, y ∈ g} .

An easy calculation shows that the bracket of two derivations is a derivation and that

Der (g) is a vector subspace of End (g), thus Der (g) is a Lie subalgebra of gl (g). By

35
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Jordan Theorem we can decompose a derivation into the sum of a semisimple and a

nilpotent part that commute; moreover both parts are derivations, indeed: let δ = σ+ τ

be a derivation, σ its semisimple part and τ its nilpotent part. If x and y are general-

ized eigenvectors of δ of eigenvalues λ and µ respectively, [x, y] is either a generalized

eigenvector of eigenvalue λ+ µ or it is zero, since the following formula holds:

(δ − (λ+ µ) Id)n ([x, y]) =
n∑
i=0

(
n

i

)
[(δ − λId)i (x) , (δ − µId)n−i (y)],

giving zero for a large integer n. Thus we have:

σ ([x, y]) = (λ+ µ) [x, y] = [λx, y] + [x, µy] = [σ (x) , y] + [x, σ (y)] ,

i.e., σ is a derivation. Then τ = δ − σ is a derivation too. Moreover, if g is semisimple

then Der (g) = ad (g). (see [3], Section 5.3).

This remark leads us to the notion of the abstract Jordan decomposition: let H be

an element of a semisimple Lie algebra g, then there exist unique Hs, Hn ∈ g such that

H = Hs+Hn and ad (H) = ad (Hs)+ad (Hn) is the Jordan decomposition of ad (H). We

call Hs, Hn, respectively, the semisimple and the nilpotent part of H and H = Hs +Hn

the abstract Jordan decomposition of H.

When both the ”classical” and the ”abstract” Jordan decomposition are defined,

they coincide. In order to prove this one needs to show that the classical semisimple

and nilpotent parts of an element still lie in g (a proof can be found in [3], Section 6.4)

and that these are semisimple and nilpotent as elements of g (see Theorem 4.3); by the

uniqueness of both decompositions, they must coincide.

For the special case of sl(n,C) we can classify nilpotent conjugacy classes using Jordan

classification Theorem. In order to analyze this case, we recall the following powerful

theorem.

Theorem 4.3. Let g be a semisimple Lie algebra, x ∈ g. Then the following claims are

equivalent:

1. x is a nilpotent (semisimple) element of g (i.e., ad-nilpotent);
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2. for every finite dimensional representation ρ : g −→ gl(V ), ρ (x) is a nilpotent

(semisimple) element of End (V );

3. if g is a Lie subalgebra of gl(n,C), x is a nilpotent (semisimple) endomorphism of

Cn.

Proof. 1. ⇒ 2. Let x be a nilpotent element of g, i.e., x is ad-nilpotent. Then ρ (x) is

an ad-nilpotent element of gl (V ) because adn (ρ (x)) = ρ (adn (x)).

If now x is a semisimple element of g and {y1, ..., yn} is a basis of g that diagonal-

izes ad (x), then {ρ (y1) , ..., ρ (yn)} diagonalizes ad (ρ (x)) in Imρ since [ρ (x) , ρ (yi)] =

ρ ([x, yi]) = λiρ (yi).

The claim follows since the abstract Jordan decomposition and the classical Jordan de-

composition coincide (when both are defined).

(2. ⇒ 1. It is sufficient to apply 2. to the case of the adjoint representation.)

2. ⇒ 3. It is sufficient to apply 2. to the case of the natural representation.

3. ⇒ 1. We first analyze the case of x being a nilpotent endomorphism of Cn. We

define two maps φ, ψ : End (Cn) −→ End (Cn) , φ(y) = xy, ψ(y) = yx for every y ∈ Cn.

These two maps are nilpotent commuting endomorphism of End (Cn), thus their differ-

ence, which is exactly ad (x), is nilpotent.

Let now x be a semisimple endomorphism of Cn. Fix a basis of Cn such that x has

matrix d = diag (a1, ...an). The elementary matrices eij form a basis of End (Cn) that

diagonalizes ad (x), since [d, eij] = (ai − aj) eij. Thus ad (x) is semisimple.

4.1 Conjugacy classes in sl(n,C)

Let us consider the space Mn (C) of n × n matrices over C. The group GL(n,C) acts

on it by conjugation and its orbits are the conjugacy classes of matrices. The scalar

matrices act trivially hence we have a representation of the quotient group PGL(n,C) :=
GL(n,C)�Z where Z is the center ofGL(n,C). Since C is algebraically closed PGL(n,C) '
PSL(n,C). We shall denote by OX the conjugacy class of X ∈ sl(n,C) under the action

of PSL(n,C), i.e., its orbit under the adjoint action (see Remark 3.36).

Let us now examine the case n = 2. We know that the characteristic polynomial of
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a matrix A in M2 (C) is of the form (t− λ1)(t− λ2), so that two possible situations may

occur:

• λ1 6= λ2: i.e., A is diagonalizable and 0 = tr(A) = λ1 + λ2 hence A is conjugate to

X (λ) =

(
λ 0

0 −λ

)
;

• λ1 = λ2 = λ: in this case we have 0 = tr(A) = 2λ which implies λ = 0. Looking at

the minimal polynomial we conclude that A is conjugate either to Y (0) =

(
0 0

0 0

)

or to Y (1) =

(
0 0

1 0

)
.

With the notation above, and defining Λs = {C∗| {λ ∼ −λ}},

sl(2,C) =
⋃
λ∈Λs

OX(λ) ∪OY (0) ∪OY (1).

In this elementary case we can recognize the general structure of the semisimple and

nilpotent orbits in a semisimple Lie algebra, namely for the conjugacy classes of sl(2,C)

we have that:

1. there exist infinitely many semisimple orbits;

2. there exists only a finite number of nilpotent orbits;

3. an orbit is both semisimple and nilpotent if and only if it is zero.

Let us analyze the case of sl(n,C), with a deeper inspection of the case n = 3.

Definition 4.4. (Soft partition)

A soft partition of n ∈ N is a tuple of natural integers [d1, d2, . . . , dn] such that d1 +d2 +

. . . + dn = n and there exists an integer k with 1 ≤ k ≤ n such that d1 ≥ d2 ≥ . . . ≥
dk > 0 and dk+1 = . . . = dn = 0.

Example 7. The soft partitions of 4 are:

[4, 0, 0, 0] , [3, 1, 0, 0] , [2, 2, 0, 0] , [2, 1, 1, 0] , [1, 1, 1, 1] .
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Let us denote by Ji the i× i Jordan block

Ji =



0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1

0 0 0 . . . 0 0


∈Mi (C)

We can associate a soft partition [d1, d2, . . . , dn] with a n×n matrix in normal Jordan

form with k blocks Jd1 , . . . , Jdk ,

X[d1,d2,...,dn] =


Jd1 0 0 . . . 0

0 Jd2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Jdk

 .

This is of course a nilpotent matrix in Mn (C).

For example, for n = 3 we have:

X[3,0,0] =


0 1 0

0 0 1

0 0 0

 , X[2,1,0] =


0 1 0

0 0 0

0 0 0

 , X[1,1,1] =


0 0 0

0 0 0

0 0 0

 .

By the normal Jordan form theorem and since an element of a Lie subalgebra of gl(V )

is nilpotent if and only if it is nilpotent in End(V ), we have proved the existence of a

”partition classification” for nilpotent elements of sl(n,C).

Let us compute the dimension of the three nilpotent orbits of sl(3,C). In order to do

this it is sufficient to calculate the dimension of the centralizer of a representative of each

orbit and then use the formula dimOX = dim g− dim gX . Obviously, the centralizer of

X[1,1,1] is g, thus dimOX[1,1,1]
= 0. If we consider the matrix X[2,1,0], an easy calculation

shows that

sl(3,C)X[2,1,0] =



a11 a12 a13

0 a11 0

0 a32 −2a11

 : aij ∈ C
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which has dimension 4, thus dimOX[2,1,0]
= 8− 4 = 4. Finally,

sl(3,C)X[3,0,0] =




0 a12 a13

0 0 a12

0 0 0

 : aij ∈ C


which has dimension 2, thus dimOX[3,0,0]

= 8− 2 = 6.

4.2 Jacobson-Morozov Theorem

The purpose of this paragraph is to prove a fundamental theorem which is the first step

in our walk toward a classification of nilpotent orbits. More precisely, we are going to

prove that with every non-zero nilpotent element in a Lie algebra g we can associate a

so called ”standard triple”.

Definition 4.5. (Standard triple)

Let g be a Lie algebra. A standard triple in g is a triple of elements {H,X, Y } ⊂ g

satisfying the following bracket relations:

[X, Y ] = H, [H,X] = 2X, [H,Y ] = −2Y.

H,X,Y are called the semisimple, nilpositive and nilnegative element of the triple, re-

spectively.

Remark 4.6. One can immediately check that a standard triple spans a Lie subalgebra

isomorphic to sl(2,C).

The nilpositive and nilnegative elements are nilpotent as elements of Span {H,X, Y },
thus by Theorem 4.3 they are nilpotent as elements of g. The same holds for the semisim-

ple element of the standard triple.

Gad-invariance of standard triples and a first isomorphism Let g be a Lie alge-

bra. We want to prove that there exists a bijection between Hom× (sl(2,C), g) and the

set of standard triples in g. Define

Γ : Hom× (sl(2,C), g) −→ {standard triples in g}
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Φ 7→ {Φ (h) ,Φ (e) ,Φ (f)} .

We can construct the inverse map of Γ in the following way: to a standard triple{
H̃, Ẽ, F̃

}
in g we associate the Lie algebra homomorphism Φ defined as the homo-

morphism that sends the semisimple element of the triple to h, the nilnegative to f and

the nilpositive to e. Φ is an isomorphism between the standard triple and sl(2,C) and

its inverse lies in Hom× (sl(2,C), g). The map defined by Γ−1
({
H̃, Ẽ, F̃

})
:= Φ−1 is

the inverse of Γ.

Gad acts on g via automorphisms, so we define its action on standard triples as

x. {H,X, Y } := {x.H, x.X, x.Y } .

We then define the action on Hom× (sl(2,C), g) as (X · Φ) (v) = X · Φ (v). If these sets

are Gad-invariant, the action is well defined and Γ (X · Φ) = X · Γ (Φ). Our bijection is

a Gad-sets isomorphism (this works because we used the bijection to transfer the action

from {standard triples in g} to Hom× (sl(2,C), g)). Thus, it is sufficient to prove that

the set of standard triples in g is Gad-invariant.

The action is via automorphisms, so x · H̃, x · X̃, x · Ỹ 6= 0 ∀x ∈ Gad and x · [α, β] =

[x · α, x · β]. It follows that
{
x · H̃, x · Ẽ, x · F̃

}
is still a standard triple, indeed ∀x ∈

Gad, we have: [
x · H̃, x · X̃

]
= x ·

[
H̃, X̃

]
= x ·

(
2X̃
)

= 2
(
x · X̃

)
,[

x · X̃, x · Ỹ
]

= x ·
[
X̃, Ỹ

]
= x · H̃,[

x · H̃, x · Ỹ
]

= x ·
[
H̃, Ỹ

]
= x ·

(
−2Ỹ

)
= −2

(
x · Ỹ

)
.

We will need the following results:

Lemma 4.7. Let g be a semisimple Lie algebra and let k its killing form. Then
(
gX
)⊥

=

[g, X]. Moreover if X ∈ g is nilpotent, then X ∈
(
gX
)⊥

.

Proof. Let W ∈ gX , then k ([g, X] ,W ) = k (g, [X,W ]) = 0 by the associativity of the

killing form. We have proved that [g, X] ⊆
(
gX
)⊥

. Since g is semisimple, k is non-

degenerate thus dim g = dim gX + dim
(
gX
)⊥

and, by the rank-nullity theorem applied
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to ad (X), dim g = dim gX+dim [g, X]. So we can conclude that dim [g, X] = dim
(
gX
)⊥

that implies [g, X] =
(
gX
)⊥

.

Let nowX be nilpotent. Since ad (X) and ad (Z) commute for every Z in gX , ad (X) ad (Z)

is nilpotent. Thus for every Z ∈ gX , k
(
X, gX

)
= trace (ad (X) · ad (Z)) = 0, i.e.,

X ∈
(
gX
)⊥

.

Lemma 4.8. Let g be a complex reductive Lie algebra and H a semisimple element in g.

Then gH is reductive and there exists a Cartan subalgebra h containing H. If Φ denotes

the root system for the pair (g, h), then

gH = h⊕
⊕
α∈ΦH

gα, where ΦH = {α ∈ Φ|α (H) = 0} .

Proof. We have already observed that there exists a Cartan subalgebra containing H. A

complete proof can be found in [1], Chapter 2.

Lemma 4.9. Let g be a complex Lie algebra and let H be a semisimple element of g. If

X is an eigenvector of ad (H), then gX is ad (H)-stable.

Proof. Let X be an eigenvector of ad (H) of eigeinvalue λ and let W be an element of

gX . We want to show that ad (H) (W ) = [H,W ] lies in gX . We have that

[X, [H,W ]] = − [[H,X] ,W ] + [H, [X,W ]] = −λ [X,W ] + 0 = 0.

We are now ready to prove

Theorem 4.10. (Jacobson-Morozov)

Let g be a complex semisimple Lie algebra and X a non-zero nilpotent element of g.

Then there exists a standard triple in g whose nilpositive element is X.

Proof. We will proceed by induction on dim g ≥ 3.

If dim g = 3 then g is isomorphic to sl(2,C) (see Remark 1.23) and we can identify

g and sl(2,C). X is an ad-nilpotent element and, by Theorem 4.3, it is a nilpotent

endomorphism of C2. By the Jordan normal form theorem, there exists A ∈ GL (2,C)
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such that X = AeA−1. Let Y = AfA−1, H = AhA−1, then {H,X, Y } is a standard

triple with nilpositive element X, indeed:

[X, Y ] = AeA−1AfA−1−AfA−1AeA−1 = AefA−1−AfeA−1 = A [e, f ]A−1 = AhA−1 = H,

[H,X] = A [h, e]A−1 = 2AeA−1 = 2X, [H, Y ] = A [h, f ]A−1 = −2AfA−1 = −2Y.

Let now be dim g > 3. If X lies in any proper semisimple subalgebra of g we can conclude

by the inductive hypothesis. Suppose that X is not contained in any such subalgebra.

We first look for a candidate for the semisimple element of the standard triple. By

Lemma 4.7 we have that X ∈
(
gX
)⊥

= [g, X], then there exists an element H such that[
H,X

]
= 2X. In order to construct a standard triple, we want H to be semisimple in g

by Remark 4.6. From Jordan Theorem we can decompose ad
(
H
)

= ad
(
H
)
s

+ ad
(
H
)
n
,

the sum of its semisimple and nilpotent parts. By Remark 4.2 there exist Hs, Hn ∈ g that

act, respectively, semisimply and nilpotently on g and H = Hs+Hn. H acts semisimply

on X, so 2X =
[
H,X

]
=
[
Hs, X

]
+
[
Hn, X

]
and it must be

[
Hs, X

]
= 2X,

[
Hn, X

]
= 0

(it is sufficient to take a basis with respect to which the matrix of ad
(
H
)

is in Jordan

normal form and to look how its nilpotent and semisimple parts act on an eigeinvector).

We then set H = Hs. Thus, we have proved that there exists a semisimple element in g

such that [H,X] = 2X. It remains to prove that there is an element Y in g that makes

{H,X, Y } a standard triple. We can decompose g in eigenspaces of ad (H):

g =
⊕
λ∈C

gλ, gλ = {W ∈ g| [H,W ] = λW} .

This is actually a finite sum since g is finite dimensional. H lies in g0, while X ∈ g2.

Moreover, if W ∈ gλ we have

ad (H) ([X,W ]) = [H, [X,W ]] = [[H,X] ,W ] + [X, [H,W ]] = (2 + λ) [X,W ] ,

i.e., [X, gλ] ⊆ gλ+2. In order to conclude our proof, it is sufficient to show that H ∈ [X, g].

Indeed if this is the case and Ŷ is an element such that H =
[
X, Ŷ

]
, we can write

Y =
∑

λ∈C Yλ where Yλ ∈ gλ. Since the sum of different eigenspaces is direct and

H ∈ g0,

H =
[
X, Ŷ

]
=
∑
λ∈C

[X, Yλ]⇒ H = [X, Y−2] .
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Therefore, if we let Y = Y−2 we have that {H,X, Y } is a standard triple with nilpositive

element X.

Now we prove that H lies in [X, g] =
(
gX
)⊥

by contradiction. Suppose that H /∈
(
gX
)⊥

,

then there exists an element Z in gX such that k (H,Z) 6= 0. By Lemma 4.9, gX is

ad (H)-invariant and we can consider the ad (H)-eigenspaces decomposition

gX =
⊕
λ∈C

gXλ , g
X
λ = gλ ∩ gX .

We note that gX0 is the centralizer of H in gX , so we can write gX as

gX =
(
gX
)H ⊕ ⊕

λ∈C\{0}

gXλ .

If Z 6= 0 and Z ∈ gXλ with λ 6= 0, then we have

0 = k ([H,H] , Z]) = k (H, [H,Z]]) = λk (H,Z)

therefore H ∈
(
gXλ
)⊥

. Thus there must be a non-zero element Z ∈
(
gX
)H

with the

property k (H,Z) 6= 0 (if not, k
(
H, gX

)
= 0 by bilinearity, that would contradict our

hypothesis).

By Lemma 4.7, Z cannot be nilpotent, indeed Z ∈
(
gX
)H

if and only if H ∈
(
gX
)Z

and

Z being nilpotent would imply Z ∈
((

gX
)Z)⊥

; then it would be k (H,Z) = 0. Thus

the semisimple part of Z is non-zero. We want to show that this situation leads to an

absurd, in particular that X lies in a proper semisimple subalgebra of g.

Let us notice that:

a) H ∈ gZs : H acts semisimply on Z and this is equivalent to the fact that Z acts

semisimply on H, then 0 = [H,Z] = − [Zs, H].

b) X ∈ gZs : this is obvious since Z ∈ gX , thus it acts semisimply on X.

c) gZs is a proper subalgebra of g: if gZs = g then Zs = 0, because it would be in the

center of g, which is trivial.

These three fact imply that X = 1
2

[H,X] ∈
[
gZs , gZs

]
, that is a proper subalgebra

of g. By Lemma 4.8 this subalgebra is also semisimple and this is in contrast with our

initial hypothesis.
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Jacobson-Morozov Theorem will provide us the surjectivity of a map from the set of

standard triples to the set of nilpotent orbits of g. In the next section we will explore

the injectivity of the same map.

4.3 Kostant and Mal’cev’s theorems

In this section we want to prove that two standard triples with the same nilpositive

element or the same semisimple element are conjugate under the action of Gad. The

representation theory of sl(2,C) (see Chapter 2) will be used.

By Weyl’s Theorem every finite-dimensional representation of a semisimple Lie algebra

is completely reducible. We can apply this result to the adjoint representation of a

standard triple {H,X, Y } (which can be identified with sl(2,C)). H acts semisimply,

thus we can decompose g in ad (H)-eigenspaces as we did in the proof of Jacobson-

Morozov’s theorem. In Lemma 4.9 we proved the stability of gX under the action of

H. Due to the representation theory of sl(2,C), in every irreducible representation of

the standard triple the eigenvalues of ad (H) are integers; moreover, gX is the sum of

highest weight spaces with non-negative weight, since an eigenvector W of H such that

X.W = [X,W ] = 0 is a maximal weight vector. Then we can refine the decomposition

obtained in Jacobson-Morozov’s theorem as follows:

gX =
⊕
i≥0

gXi , g
X
i = gi ∩ gX . (4.2)

This allows us to prove that a standard triple is uniquely determined by its nilpositive

and semisimple elements.

Lemma 4.11. Let g be a semisimple algebra and {H,X, Y } , {H,X, Y ′} two standard

triples. Then Y = Y ′.

Proof. Notice that Y −Y ′ ∈ g−2 since both Y and Y ′ do. Moreover Y −Y ′ ∈ gX , in fact

[X, Y − Y ′] = H −H = 0. From decomposition (4.2) we have that gX ∩ g−2 = {0}. It

follows that Y = Y ′.

We want to prove that two standard triples with the same nilpositive element are

conjugate under Gad; in order to obtain such a result we don’t need the whole Gad, but
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it is enough to consider a subgroup of Gad, that we will denote by UX . UX is defined as

the centralizer of X in the connected component of the subgroup of Gad with Lie algebra

u = ⊕i>0gi. We now introduce the Lie algebra uX associated with UX .

Lemma 4.12. Let g be a semisimple Lie algebra and {H,X, Y } a standard triple in

g. Then uX = gX ∩ [g, X] is an ad (H)-invariant nilpotent ideal of gX . More precisely,

uX =
⊕

i>0 g
X
i .

Proof. uX is ad (H)-invariant since both gX (see Lemma 4.9) and [g, X] are ad (H)-

invariant, indeed for Z ∈ [g, X], there exists W ∈ g such that Z = [W,X] and we

have

[H,Z] = [H, [W,X]] = [[H,W ] , X] + [W, [H,X]] = [[H,W ] + 2W,X] ∈ [g, X] .

Let now T ∈ gX and W ∈ uX ; we have that:

[X, [W,T ]] = [[X,W ] , T ] + [W, [X,T ]] = 0 + 0 = 0, i.e, [W,T ] ∈ gX

and there exists Z ∈ g such that W = [Z,X], so that

[W,T ] = [[Z,X] , T ] = [Z, [X,T ]]− [X, [Z, T ]] = − [X, [Z, T ]] ∈ [g, X] .

Thus [W,T ] ∈ uX , i.e., uX is an ideal of gX . Moreover, it must be uX ⊆
⊕

i>0 g
X
i , indeed

if T ∈ gX0 , it must be a highest weight vector of weight zero; thus there is not an element

S in gX−2 such that [S,X] = T . Since [g, X] =
⊕

j∈Z g
X
j+2, its intersection with gX must

be contained in
⊕

i>0 g
X
i . The representation theory of sl(2,C) tell us that the equality

holds. uX is nilpotent since
[
gXi , g

X
j

]
⊆ gXi+j and g is finite dimensional.

As a general fact, we can rebuild the group action from the Lie algebra using the

exponential map Exp: for Z,H ∈ g,

Exp Z ·H =
∞∑
i=0

(ad (Z))i (H)

i!
.

We notice that if Z is nilpotent, the sum makes sense because it is actually finite.

Moreover if Z lies in uX , then every summand but H lie in uX . This means that

UX ·H ⊆ uX +H, where UX is the connected Lie subgroup of GX
ad with Lie algebra uX

(since the last is nilpotent, Exp is a diffeomorphism).
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Lemma 4.13. Let g be a semisimple Lie algebra and H a semisimple element. For every

V ∈ uX there exists a unique Z ∈ uX such that Exp Z ·H = V +H.

Equivalently, for every V ∈ uX there exists a unique x ∈ UX such that x ·H = V +H.

Proof. Since g is finite dimensional, there exists an integer m such that uX =
⊕

1≤i≤m gXi .

We construct the element Z in the statement inductively.

Let V1 be the component of V in gX1 and Z1 = −V1. We have that [Z1, H] = −Z1 = V1.

So we have that

Exp Z1 ·H − (H + V ) =
∞∑
i=0

(ad (Z1))i (H)

i!
− (H + V ) = H + V1 −H − V =

= V1 − V ∈
⊕

2≤i≤m gXi .

Suppose now that there exists an element Zj such that

Zj ∈
⊕

1≤i≤j

uXi , Exp Zj ·H − (H + V ) ∈
⊕

j+1≤i≤m

gXi .

We define Z
′
j+1 as the component of Exp Zj ·H − (H + V ) ∈

⊕
j+1≤i≤m gXi that lies in

gj+1 and Zj+1 = Zj +
Z
′
j+1

j+1
. Obviously Zj+1 ∈

⊕
1≤i≤j+1 u

X
i . We also have

Exp Zj+1 ·H = Exp Zj ·H +
1

j + 1

[
Z
′

j+1, H
]

+ . . . = Exp Zj ·H −
j + 1

j + 1
Z
′

j+1 + . . .

where the dots refer to terms that lie in eingenspaces with weight higher than j + 1,

so Exp Zj+1 · H − (H + V ) ∈
⊕

j+2≤i≤m gXi . This concludes our induction and, for

Z = Zm, Exp Z ·H = V +H.

In order to prove the uniqueness of the element Z, we can notice that the projections on

the gXi ’s are uniquely determined. The existence of the element Z is equivalent to the

existence of the element x ∈ UX in the statement since Exp is a diffeomorphism.

We are now ready to prove the following crucial result.

Theorem 4.14. (Kostant)

Let g be a semisimple algebra and {H,X, Y } , {H ′, X, Y ′} two standard triples in g with

the same nilpositive element. Then there exists x ∈ UX such that x ·H = H ′, x ·X = X,

x · Y = Y ′.
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Proof. We have that [H ′ −H,X] = 2X−2X = 0, i.e. H ′−H ∈ gX . Moreover H and H ′

obviously lie in [g, X], thus H ′−H ∈ uX . We can apply Lemma 4.13 with V = H −H ′,
so there exists x ∈ UX such that x ·H = H +H ′ −H = H ′. Moreover x ·X = X since

x = Exp Z for an opportune Z in uX , so the only non-zero term in the sum will be X.

The invariance of standard triples under the action of Gad implies that {H ′, X, x · Y } is

a standard triple. By Lemma 4.11, x · Y = Y ′.

Remark 4.15. We are now ready to define the following bijection: let g be a semisimple

Lie algebra and let us consider the following map

Ω : {Gad − conjugacy classes of standard triples in g} −→ {nilpotent orbits in g}

[{H,X, Y }] 7→ OX .

Jacobson-Morozov Theorem gives us the surjectivity of this map, while the injectivity

follows from Kostant Theorem.

We can make a further step building a bijection between these sets and a certain subset

of semisimple orbits, the set of distinguished semisimple orbits. We already know that

there is no chance to have a bijection between nilpotent orbits and semisimple orbits,

since already in the case of sl(2,C) we noticed that the former is a finite set, while the

latter is infinite.

There is a natural way to produce such a map, namely

Υ : {Gad − conjugacy classes of standard triples in g} −→ {semisimple orbits in g}

[{H,X, Y }] 7→ OH

We define Sdist = ImageΥ. We will prove that this map is injective and this will be the

content of Mal’cev’s Theorem.

We want to prove that two standard triple with the same semisimple element are

conjugate under Gad. As it happened for Kostant Theorem, it is enough to consider

a subgroup of Gad; in particular, we consider the centralizer of H in Gad, i.e., GH
ad :={

x ∈ Gad

∣∣ x ·H = H
}

.
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Theorem 4.16. (Mal’cev)

Let g be a semisimple Lie algebra and {H,X, Y } , {H,X ′, Y ′} two standard triples with

the same semisimple element. Then there exists x ∈
(
GH
ad

)◦
such that {x ·H, x ·X, x · Y } =

{H,X ′, Y ′}, where
(
GH
ad

)◦
is the connected component of the identity of GH

ad.

Proof. We can decompose g into ad (H)-eigenspaces, g =
⊕

i∈Z gi as we did before. We

define

P =
{
Z ∈ g2|gZ ∩ g−2 = 0

}
.

For a nilpositive element E of a standard triple we already know that gE is the sum of

eigenspaces relative to non-negative eigenvalues; this pose X,X ′ in P. Moreover g2 is

invariant under the action of
(
GH
ad

)◦
since g0 is the tangent space of GH

ad and [g0, g2] ⊆ g2

(and the same holds for g−2).

Let now x be an element of
(
GH
ad

)◦
,

Z ∈ P⇔ gZ∩g−2 = 0⇔ x·
(
gZ ∩ g−2

)
= 0⇔ gx·Z∩x·g−2 = 0⇔ gx·Z∩g−2 = 0⇔ x·Z ∈ P

where the third and the fourth equivalences come, respectively, from the fact that

x · [a, b] = [x · a, x · b] and the invariance of g−2.

The theorem will be proved once we show that
(
GH
ad

)◦
acts transitively on P, for then

there exists an element x in
(
GH
ad

)◦
that sends X to X ′ and fixes H and we can conclude

that the two triples are conjugate by the stability of the set of standard triples under

the action of Gad and Lemma 4.3. We will use a bit of topology to show that
(
GH
ad

)◦
has

only one orbit on P.

• P is path connected (and, in particular, connected):

we want to establish a correspondence between P and a Zariski open set of g2. Indeed,

this is sufficient to prove that it is an Euclidean open path connected set (it is open

since the Euclidean topology is finer then the Zariski, while it is path connected because

the line λA + (1− λ)B linking two elements A,B is contained in P except for a finite

number of λ ∈ C and C minus a finite number of elements is path connected).

Let us now exhibit such a correspondence. We set:

T : g2 −→ Hom (g−2, g0)
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Z 7→ ad (Z) .

Notice that T (Z) is represented by a dim g0 × dim g−2 matrix, whose entries depend

linearly on Z (so this is, in fact, an homeomorphism). Moreover, KerT (Z) = g−2 ∩
g0 and ImT (Z) = [Z, g−2], therefore

Z ∈ P⇔ gZ ∩ g−2 = 0⇔ KerT (Z) = 0⇔ dim [Z, g−2] = dim g−2 = dim g2

where the last equality comes from the sl(2,C) representation theory. This proves that

Z ∈ P if and only if T (Z) has full rank. The complement of full rank matrices are ma-

trices whose columns satisfy a system of linear equations, so it is a Zariski closed set.

Thus P is homeomorphic to a Zariski open set.

• Each
(
GH
ad

)◦
-orbit is open and closed (in the Euclidean topology):

it is sufficient to prove that such orbits are open, as their complement is open since it

is a disjoint union of orbits. In order to do this, we prove that the tangent space of an

orbit is the whole space.

By the associativity of the killing form,

0 = k
([
gZ ∩ g0, Z

]
, g−2

)
= k

(
gZ ∩ g0, [Z, g−2]

)
and since [Z, g−2] ⊆ g0, we have that [Z, g−2] ⊆

(
gZ ∩ g0

)⊥ ∩ g0. By the proof of Lemma

4.8, the restriction of the killing form to g0 = gH is non-degenerate and this implies that

dim g0 = dim
((

gZ ∩ g0

)⊥ ∩ g0

)
+ dim

(
gZ ∩ g0

)
≥ dim [Z, g−2] + dim

(
gZ ∩ g0

)
,

which can be rewritten as

dim
(
gZ ∩ g0

)
≤ dim g0 − di [Z, g−2] .

We already proved that Z ∈ P ⇔ dim [Z, g−2] = dim g−2, so that for such an element

the inequality becomes

dim
(
gZ ∩ g0

)
≤ dim g0 − dim g−2 = dim g0 − dim g2.
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Now we can conclude that
(
GH
ad

)◦
-orbits have the same dimension of g2, indeed:

dim
((
GH
ad

)◦ · Z) = dim [Z, g0] = dim g0− dim
(
gZ ∩ g0

)
≥ dim g0− dim g0 + dim g2 =

= dim g2,

where the second equality is the rank-nullity Theorem applied to the map α : g0 −→
g2, α (X) = [Z,X].

It follows that
(
GH
ad

)◦
acts transitively on P.





Chapter 5

Weighted Dynkin diagrams

5.1 Kostant Theorem

Our ultimate goal is to establish a correspondence between the set of distinguished

semisimple orbits and the so called weighted Dynkin diagrams. As a consequence, we

will prove that there are only finitely many nilpotent orbits.

Let g be a semisimple Lie algebra and h a Cartan subalgebra of g. Consider a base ∆

of the root system Φ of g and the relative set Φ+ of positive root. Let n =
∑

α∈Φ+ gα

and n̄ =
∑

α∈Φ− gα. An element Z ∈ g is said to be ∆ − dominant if α (Z) is real and

nonnegative for every α in ∆.

Definition 5.1. (Borel subalgebra)

b = h⊕ n is called a Borel subalgebra of g. The opposite Borel subalgebra is b̄ = h⊕ n̄.

Definition 5.2. (Fundamental domain)

We call fundamental domain the set

D∆ =
{
x ∈ h

∣∣ Re (α (x)) > 0 or Re (α (x)) = 0 and Im (α (x)) ≥ 0, ∀α ∈ ∆
}
.

Remark 5.3. In [1], Section 2.2, it is shown that every semisimple orbit can be parametrized

by a fundamental domain and we can always conjugate an element H ∈ h so that it lies

in D∆.

A proof of the following theorem can be found in [3], Chapter 16.
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Theorem 5.4. If g is reductive and h1, h2 are Cartan subalgebras, then there exists

x ∈ Gad such that x · h1 = h2, i.e., all Cartan subalgebras are conjugate.

Let O be a nilpotent orbit and X be a representative of O. By Jacobson-Morozov

Theorem, X embeds into a standard triple {H,X, Y }. Since H is semisimple, by Remark

1.22, there exists a Cartan subalgebra hX containing H. Theorem 5.4 and Remark 5.3

imply that we can assume without loss of generality that H lies in h and in D∆.

Lemma 5.5. α (H) ∈ N for every α ∈ ∆. In particular, H is ∆− dominant.

Proof. H lies in D∆ and we know from Chapter 2 that g decomposes into the direct sum

of ad (H)-eigenspaces with integral eigenvalues; thus for every simple root α we have

that α (H) must be a nonnegative integer, i.e., α (H) ∈ N.

Remark 5.6. We point out that Y lies in n̄. Indeed by Lemma 5.5 we have that every

eigenvector of ad (H) that lies in b must have a positive eigenvalue, since positive roots

are nonnegative sums of simple roots. Moreover Y ∈ g−2, thus Y ∈ n̄.

Lemma 5.7. α (H) ∈ {0, 1, 2} for every α ∈ ∆.

Proof. We first show that [Xα, Y ] ∈ b̄ for every α ∈ ∆. Since Y lies in n̄,

Y =
∑
β∈Φ−

cβXβ, cβ ∈ C.

Moreover [gα, gβ] ⊆ gα+β and any negative root is a non-positive sum of simple roots,

thus:

[Xα, Y ] ∈
⊕
β∈Φ−

gα+β where β can be written as β =
∑
γ∈∆

cγγ, cγ ≤ 0.

Thus we have three possibilities:

1. β + α = 0: β = −α and gα+β ⊆ h;

2. β+α ∈ Φ: it must be a negative root, since there is at least one negative coefficient

when writing β + α as a sum of simple roots;

3. β + α /∈ Φ, i.e., gα+β = 0.
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In any of these possibilities, gα+β ⊆ b̄ thus [Xα, Y ] ∈ b̄.

If Xα ∈ gα centralizes Y , we can argue as we did in order to obtain decomposition (4.2)

and conclude that

gY =
⊕
i≤0

gi.

This implies that α (H) ∈ Z≤0 ∩ N = {0}. Suppose now that [Xα, Y ] 6= 0; we have just

observed that it must lie in b̄ and by Lemma 2.8 we have that [Xα, Y ] is an eingenvector

of adH of eigenvalue α (H)−2, thus it must be α (H)−2 ∈ −N, i.e., α (H) ∈ {0, 1, 2}.

Definition 5.8. (Weighted Dynkin diagram)

The weighted Dynkin diagram of OX is the Dynkin diagram of g where the node cor-

responding to the simple root α is labeled with α (H). We denote such a diagram by

∆ (OX).

By convention, the zero nilpotent orbit is represented by a Dynkin diagram with every

node is labeled by 0, even though we don’t consider {0, 0, 0} as a standard triple.

Theorem 5.9. (Kostant)

There are only finitely many, and in fact at most 3rank g, nilpotent orbits in g. The

weighted Dynkin diagram is a complete invariant, i.e., ∆ (OX) = ∆ (OX′) if and only if

OX = OX′.

Proof. Every node has at most three possible labels, thus the number of nilpotent orbits

in g is less than or equal to 3rank g.

Let {H,X, Y } , {H ′, X ′, Y ′} be two standard triples. Then ∆ (OX) = ∆ (OX′) if and

only if α (H) = α (H ′) for every α ∈ ∆. Since ∆ is a basis of g∗, these values completely

determine H and H ′, thus H = H ′. By Theorem 4.16, the two standard triples are

conjugate, i.e., OX = OX′ .

5.2 The case of sl(n,C)

The Dynkin diagram of sl(n,C) is the diagram of Type An:

b b b b· · ·



56 5. Weighted Dynkin diagrams

We have seen that the nilpotent orbits of sl(n,C) are parametrized by the soft par-

titions of n in this way:

[d1, d2, . . . , dn]←→ X[d1,d2,...,dn] =


Jd1 0 0 . . . 0

0 Jd2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Jdk


where k is the largest integer such that dk is non-zero.

The standard triple
{
X[d1,d2,...,dn], H[d1,d2,...,dn], Y[d1,d2,...,dn]

}
with nilpotent elementX[d1,d2,...,dn]

consists of diagonal blocks matrices

H[d1,d2,...,dn] =


Dd1 0 0 . . . 0

0 Dd2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Ddk

 , Y[d1,d2,...,dn] =


Yd1 0 0 . . . 0

0 Yd2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Ydk


where blocks Ddi , Ydi are as in the proof of Theorem 2.11 with λ = di − 1. It is possible

to choose the set of positive roots in such a way that the corresponding Borel subalgebra

is the subalgebra of upper triangular matrices of trace 0; this choice corresponds to the

base ∆ = {α1, . . . , αn−1} where αi (ek,j) is defined by the equation [ei,i − ei+1,i+1, ek,j] =

αi (ek,j) ek,j. It is immediately verified that if h = diag (h1, . . . , hn) , hi ∈ Z, then

[h, eij] = (hi − hj) eij and h is ∆ − dominant if and only if h1 ≥ h2 ≥ . . . ≥ hn. In

order to compute the weighted Dynkin diagram of O[d1,d2,...,dn] it is sufficient to conjugate

H[d1,d2,...,dn] with a permutation matrix so that it becomes ∆− dominant. Then we have

that ∆
(
O[d1,d2,...,dn]

)
is

b b b b· · ·
h1−h2 h2−h3 hn−2−hn−1 hn−1−hn

In the two following tables we write all the possibilities for n = 3 and n = 4. These

examples show that the number of nilpotent orbits is in fact strictly lower than 3n.
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Nilpotent orbits in sl(3,C)

Orbit H[d1,...,dn] H [d1,...,dn] ∆
(
O[d1,...,dn]

)
O[3,0,0] diag (2, 0,−2) diag (2, 0,−2) b b2 2

O[2,1,0] diag (1,−1, 0) diag (1, 0,−1) b b1 1

O[1,1,1] diag (0, 0, 0) diag (0, 0, 0) b b0 0

Nilpotent orbits in sl(4,C)

Orbit H[d1,...,dn] H [d1,...,dn] ∆
(
O[d1,...,dn]

)
O[4,0,0,0] diag (3, 1,−1,−3) diag (3, 1,−1,−3) b b b2 2 2

O[3,1,0,0] diag (2, 0,−2,−0) diag (2, 0, 0,−2) b b b2 0 2

O[2,2,0,0] diag (1,−1, 1,−1) diag (1, 1,−1,−1) b b b0 2 0

O[2,1,1,0] diag (1,−1, 0, 0) diag (1, 0, 0,−1) b b b1 0 1

O[1,1,1,1] diag (0, 0, 0, 0) diag (0, 0, 0, 0) b b b0 0 0
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In what follows we will use the weighted Dynkin diagrams of nilpotent orbits in

sl(n,C) to compute the dimension of the orbits. Our goal is to express this dimension

in terms of the Young diagram associated with the partition of n (that corresponds to a

Jordan block matrix). We shall use the weighted Dynkin diagram and the representation

theory of sl(2,C).

Let {H,X, Y } be a standard triple in g and g =
⊕

i∈Z gi the decomposition of g in

ad (H)-eigenspaces. We recall that dimOX = dim g− dim gX .

Lemma 5.10. dim gX = dim g0 + dim g1.

Proof. This result follows from the representation theory of sl(2,C) applied to the adjoint

action on g of the subalgebra spanned by the standard triple. An element that commutes

with X is a highest weight vector and every irreducible submodule contains only one such

vector (up to scalar multiples); this implies that the dimension of the centralizer of X

is the number of irreducible submodules of g and, by Theorem 2.22, there are exactly

dim g1 + dim g0 irreducible submodules.

Let now g = sl(n,C). Lemma 5.10 suggests how to calculate the dimension of the

centralizer of X by looking at the weighted Dynkin diagram of the orbit OX . Since h is

commutative and H ∈ h, we have that h ⊆ g0. The dimension of g0 is thus the sum of

the dimension of h, i.e., the number of nodes of the diagram, and the number of roots

α ∈ Φ such that α (H) = 0. Obviously if a root is zero on H so is its negative, thus we

can restrict our attention to the positive roots that are zero on H and then double this

number. With respect to ∆, every positive root is of the form αi + αi+1 + . . . αi+k, i ∈
{1, . . . , n− 1} , k ≤ n − 1 − i. In order to see how many positive roots are zero on H,

it is thus sufficient to sum up consecutive labels of the nodes and see how many of these

are zero. For example, if we consider the weighted Dynkin diagram associated with the

soft partition [2, 2, 1, 0, 0] of 5:

b b b b0 1 1 0

the number of nodes is four and the sum of consecutive labels is 0 if and only if it is the

sum of just one label, the first or the fourth. Thus the dimension of g0 is 4 + 2 · 2 = 8.

Now we compute the dimension of g1. We notice that only positive roots are nonnegative
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on H (since simple roots are nonnegative on H), thus if α (H) = 1, it must be α ∈ Φ+;

thus it is sufficient to sum consecutive labels of the nodes and see how many of these

sums are equal to one. In the previous example, there are four possibilities, namely: α2,

α3, α1 + α2, α3 + α4.

We can now compute the dimension of the nilpotent orbit OX[2,2,1,0,0]
:

dimOX[2,2,1,0,0]
= dim sl(5,C)− dim g0 − dim g1 = 24− 8− 4 = 12.

Remark 5.11. In order to compute the dimension of the centralizer of a Jordan matrix

in sl(n,C), we can reduce this calculation to the dimension of the centralizer of the

same matrix in gl(n,C), indeed these dimensions differ by one: scalar matrices commute

with every element and the condition for a matrix to have zero trace is linear, hence

gl(n,C)X = sl(n,C)X⊕CI. For example, the dimension of the centralizer of X[2,2,1,0,0] in

gl(n,C) is 13. The Young diagram associated with the soft partition [2, 2, 1, 0, 0] is the

following:

Notice that the sum of the squares of the columns’ length is exactly 9+4=13. We will

show that this is not just a case (see Theorem 3.24 below).

We fix the following notation: [d1, . . . , dn] is a soft partition of n, k is the largest

integer for which dk > 0; OX[d1,...,dn]
is a nilpotent orbit in sl(n,C) associated with the

soft partition [d1, . . . , dn]; H[d1,...,dn] is the semisimple element of the standard triple with

nilpositive element X[d1,...,dn].

Lemma 5.12. Let 1 ≤ i < j ≤ k. If di, dj have same parity, there are at least dj labels

equal to zero in the weighted Dynkin diagram of the orbit. In particular, there are at

least 2dj roots that are 0 on H[d1,...,dn].

Proof. In the diagonal of the matrix H[d1,...,dn] we have two strings {di − 1, . . . ,−di + 1},
{dj − 1, . . . ,−dj + 1}. Since i < j and di, dj have the same parity, di ≥ dj and the second

string is included in the first (for example, if we consider the soft partition [4, 2, 0, 0, 0, 0]

of 6, we have two non-zero parts with the same parity, namely d1 = 4 and d2 = 2, that
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are associated with the strings {3, 1,−1,−3} and {1,−1}; we have that H[4,2,0,0,0,0] =

diag (3, 1,−1,−3, 1,−1) and the correspondent ∆ − dominant matrix is H̄[4,2,0,0,0,0] =

diag (3, 1, 1,−1,−1,−3)); thus we have dj labels that are zero (2, in the example). In

particular there are dj simple roots that are zero on H[d1,...,dn] and their negatives are

zero on H[d1,...,dn] too.

Lemma 5.13. Let 1 ≤ i < j ≤ k. If di, dj have different parities, there are at least 2dj

labels equal to one in the weighted Dynkin diagram of the orbit. In particular, there are

at least 2dj simple roots that are 1 on H[d1,...,dn].

Proof. As in the previous lemma, in the diagonal of the matrix we have two blocks strings

{di − 1, . . . ,−di + 1}, {dj − 1, . . . ,−dj + 1}. di > dj since i < j and they have different

parities; thus there are at least two labels that are equal to one for each dj−k contained

in the second string, indeed dj−k+ 1 and dj−k−1 are contained in the first string (for

example, if we consider the soft partition [3, 2, 0, 0, 0] of 5 we have two non-zero parts

with different parity, namely 3 and 2, that are associated with the strings {2, 0,−2} and

{1,−1}).

By Lemmas 5.12 and 5.13 we have that, for different reasons, every dj (with j 6= 1)

increases the dimension of gX of 2dj. What we have not considered yet, is the chance to

have consecutive zeros in the labeling and to have a zero label near a one label. In these

cases it is possible to sum labels and still obtain a zero or a one.

Definition 5.14. (Dual soft partition)

Let [d1, . . . , dn] be a soft partition of n and Y the associated Young diagram. The dual

soft partition is the soft partition of n associated with the transposed Young diagram of

Y .

Example 8. Let us consider the soft partition [2, 2, 1, 0, 0] of 5, i.e., the partition asso-

ciated with is associated with the Young diagram
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Then the transposed Young diagram is

that is associated with the (dual) soft partition [3, 2, 0, 0, 0].

Definition 5.15. Let j ∈ {1, . . . , n}. We define

rj = max
{
i ∈ {1, . . . , n}

∣∣ di ≥ j
}

if j ≤ d1; rj = 0 if j > d1.

Example 9. Let us consider the soft partition [2, 2, 1, 0, 0] of 5. We have that d1 = 2,

thus r3 = r4 = r5 = 0; moreover r1 = 3 and r2 = 2.

Remark 5.16. Let rj be as in Definition 5.15. Then the rj-th row of the Young diagram

associated with the partition is the lowest row whose length is equal to or greater than

j, thus it is the length of the j-th column of the Young diagram. If there are no rows

of length j, then rj = rj+1; more generally, the nonnegative integer rj − rj+1 counts the

number of rows of length j in the Young diagram.

Notice that
n∑
j=1

rj = n (5.1)

since [r1, . . . , rn] is the dual partition of [d1, . . . , dn].

Theorem 5.17. The dimension of the centralizer of X[d1,...,dn] in gl(n,C) is

dim gl(n,C)X[d1,...,dn] =
n∑
j=1

rj
2.

It follows that dimOX[d1,...,dn]
= n2 −

∑n
j=1 rj

2.

Proof. We use the previous results to calculate the dimension of the centralizer of

X[d1,...,dn] in sl(n,C).

Let us consider the Young diagram associated with the orbit OX[d1,...,dn]
. Then there

are rj+1 rows longer than j
(
= drj

)
and each of them gives a contribution of 2j to the

dimension of the centralizer. As we noticed before, we have rj − rj+1 parts of length

j; once we choose a row of length j, we are forced to sum all the (zero) labels before
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the zero or one label. Thus once we choose a row of length j the rows above it give a

contribution of

2j · rj+1 · (rj − rj+1)

to the dimension of the centralizer of X[d1,...,dn]. Let us clarify this argument through an

example. Let us consider the orbit associated with the Young diagram

and fix j = 2; then rj = 5 and rj+1 = 3. The associated ∆ − dominant matrix is

diag (3, 2, 2, 1, 1, 1, 0, 0,−1,−1,−1,−2,−2,−3) (it obviously makes no difference, but to

better understand the example we agree on the following ordering: if there are one or

more equal integerrs m, the first comes from the first row of length m + 1 and so on if

there are other rows of length m + 1, then we put the integers m due to longer rows).

The associated Dynkin diagram is the following:

b b b b b b b b b b b b b1 0 1 0 0 1 0 1 0 0 1 0 1

Consider the first row of length j, i.e., the fourth row. There are four labels equal to one

due to the fact that 3 and 2 have different parities, that we evidence in blue:

b b b b b b b b b b b b b1 0 1 0 0 1 0 1 0 0 1 0 1

There is another row of length three and, due to this fact, for each of the previous one

labels there is a zero label before it, thus the effect of this row of length three on the

considered row of length two is unique, for each label one; we put this in evidence with

red and orange:

b b b b b b b b b b b b b1 0 1 0 0 1 0 1 0 0 1 0 1

It remains to consider the row of length 4, that affects the dimension of an orbit by two

strings of zeros (thus it increases of 4 the dimension of the centralizer), that we evidence

in green:

b b b b b b b b b b b b b1 0 1 0 0 1 0 1 0 0 1 0 1
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The way the second row of length two gives a contribution of 2j · rj+1 = 12 (equal to

the contribution of the previous case) is similar to the case of the second part of length

three. We now give the details. We evidence in blue the contribution that comes from

the first part of length three:

b b b b b b b b b b b b b1 0 1 0 0 1 0 1 0 0 1 0 1

We now put in evidence the effect due to the second part of length 3 (we need two

different diagrams to avoid ”intersections”:

b b b b b b b b b b b b b1 0 1 0 0 1 0 1 0 0 1 0 1

b b b b b b b b b b b b b1 0 1 0 0 1 0 1 0 0 1 0 1

Finally, we consider the row of length 4, that produces two zeros in the Dynkin diagram

(and thus affects by 4 the dimension of the centralizer):

b b b b b b b b b b b b b1 0 1 0 0 1 0 1 0 0 1 0 1

We argue in the same way for every j (if it is not the maximum in the soft partition),

and this shows that, once a row of length j has been fixed, then each of the rj+1 rows of

higher length gives a contribution of 2j, thus we have a total contribution 2j · rj+1 for

each row of length j, as stated before the example. If j is the maximum integer in the

soft partition, there is no effect on higher parts (because there are not) and the formula

2j · rj+1 · (rj − rj+1) still holds since rj+1 = 0.

Now we need to calculate how much the number of rows of length j influences the

dimension of the centralizer. We recall that every pair of rows of length j gives a

contribution of 2j. Choosing two rows of length j is equivalent to choosing a string

of consecutive labels that we need to sum (we will choose the first and the last row of

length j and consider the string in between), thus there are
(
rj−rj+1

2

)
possible choices.

The contributions are(
rj − rj+1

2

)
· 2j = (rj − rj+1) (rj − rj+1 − 1) .



64 5. Weighted Dynkin diagrams

The sum of the two contributions is 2j · rj+1 · (rj − rj+1) + (rj − rj+1) (rj − rj+1 − 1) =

j (rj − rj+1) (rj+1 + rj − 1). In order to obtain the dimension of the centralizer of X in

gl(n,C), what is left to do is to sum over j ∈ {1, . . . , n} and add the number of nodes

(n− 1) plus one:

dim gl(n,C)X[d1,...,dn] = dim sl(n,C)X[d1,...,dn] + 1 = n+
n−1∑
j=1

j (rj − rj+1) (rj − rj+1 − 1) =

=
n∑
j=1

rj +
n−1∑
j=1

j
((
r2
j − r2

j+1

)
+ (−rj + rj+1)

)
=

n∑
j=1

rj +
n∑
j=1

r2
j −

n∑
j=1

rj =
n∑
j=1

r2
j

where in the second to last equality we used the fact that for j = k and j = k + 1 there

are common terms. The last assertion is an immediate consequence of the formula we

just proved:

dimOX[d1,...,dn]
= dim sl(n,C)−dim sl(n,C)X[d1,...,dn] = dim sl(n,C)+1−dim sl(n,C)X[d1,...,dn]−1 =

= dim gl(n,C)− dim gl(n,C)X[d1,...,dn] = n2 −
n∑
j=1

r2
j .
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