“Myocontrol of Prosthetic Hands: Enforcing Active Learning by a Machine Learning based Fault Detector”

Salzillo, Vincenzo (2020) “Myocontrol of Prosthetic Hands: Enforcing Active Learning by a Machine Learning based Fault Detector”. [Laurea magistrale], Università di Bologna, Corso di Studio in Automation engineering / ingegneria dell’automazione [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Improvements in the control of prosthetic hands can provide a future solution for amputated people, improving their motor skills and in general their quality of life. The prosthesis controlled by electromyography (EMG) are studied for their greater potential, but the technology is still unprepared for mass usage. The control is too unstable due to various phenomena related to the inconstancy of bioelectric signals and changes in the human body posture during the execution of tasks. This thesis is focused on the creation of a fault detector able to detect these instabilities and correct the prosthesis’s future behaviour. Machine learning algorithms and methodologies were employed for this objective. The approach is then tested on four healthy subjects with a preliminary experiment.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Salzillo, Vincenzo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
prosthesis,EMG,control,Fault detector,Machine learning algorithm,Ridge Regressor,Random Fourier Features,Limb position effect
Data di discussione della Tesi
9 Ottobre 2020
URI

Altri metadati

Gestione del documento: Visualizza il documento

^