Brasini, Martina
(2020)
On the concept of permutant in the theory of group equivariant non-expansive operators.
[Laurea magistrale], Università di Bologna, Corso di Studio in Matematica [LM-DM270]
Documenti full-text disponibili:
![]() |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (246kB) |
Abstract
L'applicazione di operatori non espansivi equivarianti rispetto a un gruppo (GENEOs) in ambito di deep learning e topological data analysis si è recentemente dimostrata molto efficace. In questa tesi viene approfondito il concetto di permutante, su cui si basa un metodo di costruzione di tali operatori. In particolare si dimostra che i permutanti sono organizzati in una struttura reticolare, dotata di massimo, e che quest'ultimo risulta essere un gruppo.
Abstract
Altri metadati
Statistica sui download
