Speech Analysis for Automatic Identification of Mild Cognitive Impairment through Autoencoders

Allevi, Davide (2019) Speech Analysis for Automatic Identification of Mild Cognitive Impairment through Autoencoders. [Laurea magistrale], Università di Bologna, Corso di Studio in Informatica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (5MB)

Abstract

Nowadays, cognitive decline is unfortunately a non-curable disease which, due to an alteration in brain function, causes the progressive decline of memory, thought and reasoning abilities, so much so that in its most severe state patients reach the complete loss of autonomy. Being able to identify the first signs of cognitive decline in a "pre-symptomatic" phase certainly becomes fundamental in trying to respond significantly to the disease. To succeed in this, the researchers focused on one of the most evolved abilities of the human mind: the language. In this thesis we proposed a method to classify audio files to detect subjects suffering from cognitive decline. In particular we used the Autoencoder method that is a type of artificial neural network used to learn efficient data codings in an unsupervised manner. The specific use of the autoencoder is to use a feedforward approach to reconstitute an output from an input. In our case we have used the software auDeep that is software for unsupervised feature learning with deep neural networks (DNNs), which trains an autoencoder for the extraction of features from spectrograms and their classification. In addition, the SpecAugment method was used to increase the number of data to be analyzed. This method involves cutting some frequency and time bands into the spectrograms and using them as new data.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Allevi, Davide
Relatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM A: TECNICHE DEL SOFTWARE
Ordinamento Cds
DM270
Parole chiave
Autoencoder,SpecAugment,auDeep,Mild Cognitive Impairment
Data di discussione della Tesi
19 Dicembre 2019
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^