
ALMA MATER STUDIORUM · UNIVERSITÀ DI BOLOGNA

SCUOLA DI SCIENZE
Corso di Laurea Magistrale in Informatica

Speech Analysis for Automatic Identification
of Mild Cognitive Impairment

through Autoencoders

Relatore:
Chiar.mo Prof.
Danilo Montesi

Correlatore:
Ph.D.
Flavio Bertini

Presentata da:
Davide Allevi

Sessione II
Anno Accademico 2018-19

Table of contents

List of figures 5

Introduction 9

1 State of the art 11
1.1 Manual feature extraction . 12
1.2 Automatic feature extraction . 17

2 Autoencoder review 21
2.1 Definition Autoencoder . 22

2.1.1 Mean Squared Error (MSE) . 23
2.1.2 Kullback-Leibler (KL) divergence 23

2.2 The use of autoencoders . 24
2.3 Types of Autoencoder . 24

2.3.1 Denoising Autoencoder . 24
2.3.2 Sparse Autoencoder . 25
2.3.3 Contractive Autoencoder . 26
2.3.4 Undercomplete Autoencoder . 27
2.3.5 Convolutional Autoencoder . 27
2.3.6 Variational Autoencoder . 28
2.3.7 Deep Autoencoder . 29

2.4 Example . 29

3 Data Augmentation 33
3.1 Image data augmentation . 33
3.2 Text Augmentation . 36

3.2.1 Back translation . 36
3.2.2 Easy Data Augmentation (EDA) . 37

3.3 SpecAugment . 39

4 Table of contents

4 Proposed approach to speech analysis for Autoencoder 43
4.1 Dataset . 44
4.2 Software platform: Google Colab . 48

4.2.1 Create a folder for notebooks . 48
4.2.2 Set up free GPU . 49
4.2.3 Mounting Google Drive to Colab Notebook 49

4.3 Experiment . 50
4.3.1 Experimental settings . 52
4.3.2 Experiment on three classes (CON, MCI, eD) 55
4.3.3 Experiment on two classes (CON, DEC) 71

4.4 Results . 75

Conclusions 77

Bibliography 79

List of figures

1.1 Extraction features . 12
1.2 Manual extraction in Gosztolya.G et al. [1] 13
1.3 Results in Gosztolya.G et al. [1] . 14
1.4 Automatic extraction in Gosztolya.G et al. [1] 17
1.5 Result automatic extraction in Gosztolya.G et al. [1] 18
1.6 Results in Themistocleous.C [2] . 19

2.1 Architecture of an Autoencoder . 22
2.2 Architecture of a Denoising Autoencoder 25
2.3 Architecture of a Sparse Autoencoder . 26
2.4 Architecture of a Contractive Autoencoder 26
2.5 Architecture of a Undercomplete Autoencoder - Hidden layer has smaller

dimension than input layer . 27
2.6 Architecture of a Convolutional Autoencoder 28
2.7 Difference between autoencoder (deterministic) and variational autoencoder

(probabilistic) . 28
2.8 Deep Autoencoder) . 29
2.9 Example of image coloring . 30
2.10 Example of feature variation . 30
2.11 Example of dimensionality reduction . 30
2.12 Example of watermark removal . 31

3.1 From the left, we have the original image, followed by the image flipped
horizontally, and then the image flipped vertically 34

3.2 The images are rotated by 90 degrees clockwise with respect to the previous
one, as we move from left to right . 34

3.3 From the left, we have the original image, the image scaled outward by 10%,
and the image scaled outward by 20% . 35

6 List of figures

3.4 From the left, we have the original image, a square section cropped from the
top-left, and then a square section cropped from the bottom-right. The cropped
sections were resized to the original image size 35

3.5 From the left, we have the original image, the image translated to the right, and
the image translated upwards . 35

3.6 From the left, we have the original image, image with added Gaussian noise,
image with added salt and pepper noise . 36

3.7 Latent space visualization of original and augmented sentences in the Pro-Con
dataset . 38

3.8 A waveform is typically converted into a visual representation before being fed
into a network . 40

3.9 Time warping a spectrogram . 40
3.10 Frequency masking a spectrogram . 41
3.11 Time masking a spectrogram . 41
3.12 All three augmentations combined on a single spectrogram 42

4.1 "test_linguaggio" folder structure . 45
4.2 "test_linguaggio" folder structure with .WAV 45
4.3 "dataset_1" folder structure . 46
4.4 "dataset_1" folder structure with .WAV . 46
4.5 "dataset_2" folder structure . 47
4.6 "dataset_2" folder structure with .WAV . 47
4.7 Create a folder for your notebooks . 48
4.8 Connecting to Server and Setting up GPU Runtime 49
4.9 Code to Mount Your Google Drive to Colab Notebook 49
4.10 Pre-Authorization . 50
4.11 Post-Authorization . 50
4.12 Illustration of the feature learning procedure with auDeep 51
4.13 audeep folder structure . 51
4.14 backend folder structure . 52
4.15 cli folder structure . 52
4.16 git clone to auDeep . 53
4.17 Installing auDeep . 54
4.18 Installing netCDF library version 1.4.0 . 54
4.19 Confusion matrix on dataset_1 (without augmentation) 65
4.20 Comparison on the size of the original dataset_1 and dataset_1 augment . . . 70
4.21 Confusion matrix augment dataset_1 . 70

List of figures 7

4.22 Confusion matrix on dataset_2 (without augmentation) 72
4.23 Comparison on the size of the original dataset_2 and dataset_2 augment . . . 73
4.24 Confusion matrix augment dataset_2 . 74

Introduction

Nowadays, cognitive decline is unfortunately a non-curable disease which, due to an alteration
in brain function, causes the progressive decline of memory, thought and reasoning abilities, so
much so that in its most severe state patients reach the complete loss of autonomy.
People suffering from cognitive decline often have difficulty completing daily activities. Some-
times, they may have problems driving the car to a familiar place, managing a budget at work
or remembering the rules of a favorite game, they may also have difficulty following or partici-
pating in a conversation. These individuals can stop in the middle of a conversation and have
no idea how to continue, or they may happen again. They could struggle with the vocabulary,
have trouble finding the right word or call things by the wrong name.
Before manifesting itself so clearly, however, cognitive decline goes through a phase that can
last several years, during which, although the symptoms are minimal, the disease is at work to
determine the decisive brain damage that will lead to the onset of that ’set of disorders that goes
by the name of "dementia".
Being able to identify the first signs of cognitive decline in a "pre-symptomatic" phase certainly
becomes fundamental in trying to respond significantly to the disease. To succeed in this, the
researchers focused on one of the most evolved abilities of the human mind: the language.
One of the fundamental reasons for which the language was chosen is surely not to be invasive
on people. In particular, some researchers have developed a study that involved 96 patients,
some of whom showed symptoms of Mild Cognitive Impairment (MCI), a condition that can
occur before Alzheimer’s disease. During this experiment each patient is asked to describe an
image, a working day and the last dream that was made.
Once the answers were collected, they were analyzed using specific automatic language pro-
cessing techniques, able to examine the rhythm and sound of words, the use of vocabulary and
syntax and other details of linguistic productions . Finally, by checking the results of patients
suffering from the disease and those without disorders, they tried to find signs of cognitive
impairment that conventional neuropsychological tests are unable to identify.
In this thesis we proposed a method to classify audio files to detect subjects suffering from
cognitive decline. In particular we used the Autoencoder method that is a type of artificial

10 List of figures

neural network used to learn efficient data codings in an unsupervised manner. The specific use
of the autoencoder is to use a feedforward approach to reconstitute an output from an input. In
our case we have used the software auDeep that is software for unsupervised feature learning
with deep neural networks (DNNs), which trains an autoencoder for the extraction of features
from spectrograms and their classification.
In addition, the SpecAugment method was used to increase the number of data to be analyzed.
This method involves cutting some frequency and time bands into the spectrograms and using
them as new data.
The thesis is structured as follows:

Chapter 1
In the first chapter the state of the art is described making a report on the main techniques to
detect subjects suffering from cognitive decline through audio files.

Chapter 2
In the second chapter the notion of "Autoencoding" is introduced, then going on to explain
more in detail what an Autoencoder is and how many types of autoencoders can be found.

Chapter 3
In the third chapter a general explanation is given about what the data augmentation is and
in which fields it can be used. First of all we explain it when it is applied on the images for
which it is the most used then we go on to explain in brief how it behaves when it is used for
texts. Finally we will make a specific explanation on the data augmentation concerning the
audio files, more precisely on the SpecAugment which is precisely the method we will use in
our experiment.

Chapter 4
In the fourth chapter we move on to the description of our approach. In particular we are going
to explain in detail the dataset as it was built and the work environment that we will use in our
experiment. Next we explain in detail the experiment carried out both on the 3 classes (Control,
Mild Cognitive Impairment, early Dementia) and on the 2 classes (Control, Decline). Finally a
general summary is made comparing the results obtained by us and those that were obtained in
the state of the art.

Conclusions
At the end of the paper, the final conclusions drawn from the various analyzes will be presented.

Chapter 1

State of the art

In the state of the art we started from a study based on the analysis of spontaneous language or
rather not with conventional tests, using technologies that also refer to artificial intelligence and
big data analysis. The main idea is precisely that of capturing, through spontaneous language,
some early signs. To identify these signs it is necessary to use technologies that are able to
identify, for example, the spaces between a word and another or the intonation that is given to a
sentence, but the things that are altered first seem to be those that transmit emphasis to a speech
or when emotions are activated on our speech.
In particular, the language has been chosen among all the faculties of man, because it is a very
complex task of our brain, in fact it is known that in the advanced stages of cognitive decline
there is a strong decay of this faculty and therefore is the main candidate to find very early
markers of the disease before the signs that bring to the diagnosis appear classically.
The goal of this study is certainly to try to prevent Alzheimer’s disease in advance so that we
can avoid starting treatment too late, of course it will take decades before the symptoms of
the disease appear but most likely through early diagnosis it will be possible to slow down the
disease, as has been possible in other diseases.
Therefore, as mentioned above, recent studies have suggested that language alterations may
be one of the first signs of cognitive decline, often found years before other cognitive deficits
occurred. The main goal of the speech analysis is to try to identify features that can be useful
for studying the domain that interests us.
These features, as can be seen from the figure below (Fig. 1.1), can be extracted in two ways
either manually or automatically, and subsequently analyzed using known machine learning
techniques.

12 State of the art

Figure 1.1: Extraction features

1.1 Manual feature extraction

The extraction of the features in manual way are the most frequent and that initially were carried
out more frequently in the first experiments. The type of features to be extracted can be different
and can be done in different ways. For example in the paper C. Fraser et al. [3] a method with
manual extraction is proposed in particular the data have been taken from the DementiaBank
corpus, from which 167 patients diagnosed with “possible” or “probable” Alzheimer’s disease
(AD) provide 240 narrative samples, and 97 controls provide an additional 233. The two groups
are not matched for age and education, which is one limitation of these data. Narrative speech
was collected using the “Cookie Theft” picture description task from the Boston Diagnostic
Aphasia Examination 1. This protocol instructs the examiner to show the picture to the patient
and say, “Tell me everything you see going on in this picture”.
All speech sample was recorded then manually transcribed at the word level following the
TalkBank CHAT 2 protocol. Narratives were segmented into utterances and annotated with
filled pauses, paraphasias, and unintelligible words. From the CHAT transcripts have been
kept the wordlevel transcription and the utterance segmentation and have been discarded the
morphological analysis, dysfluency annotations, and other associated information. Before
tagging and parsing the transcripts have been removed automatically short false starts consisting
of two letters or fewer and filled pauses (i.e uh, um, er, ah). After which these variables are
used to train a machine learning classifier to distinguish between participants with AD and
healthy controls. The result obtained was an accuracy of over 81% in distinguishing individuals
with AD from those without based on short samples of their language on a picture description
task. While in Gosztolya.G et al. [1] unlike C. Fraser et al. [3] it carries out the experiment
on three classes instead of two. More in detail uses a database as recorded at the Memory
Clinic at the Department of Psychiatry of the University of Szeged, Hungary. They have been

1https://en.wikipedia.org/wiki/Boston_Diagnostic_Aphasia_Examination
2https://talkbank.org/

1.1 Manual feature extraction 13

collected utterances from three categories of subjects: those suffering from MCI, those affected
by early-stage AD, and those having no cognitive impairment at the time of recording (control
group). Some have not been taken into consideration such as those who have suffered head
injuries, depression or psychosis. From some previous studies it has been found that MCI
and AD affect the spontaneous speech of the patients more than their planned speech. This is
because in the case of planned speech, speakers usually have some time in advance to think
about what they would like to say, hence difficulties in word finding (due to memory decline)
cannot be reliably detected while in the case of spontaneous speech, speakers are required to
speak on the spot, which might truly reflect their difficulties in word finding. for this reason in
this paper they have been recorded spontaneous speech.
After the presentation of a specially designed one-minute-long animated film, the subjects were
asked to talk about the events seen on the film (immediate recall). After the presentation of a
second film, the subjects were asked to talk about their previous day (previous day). While in the
last task the subjects were asked to talk about the second film (delayed recall). They have been
used the recordings of 25 speakers for each speaker group, resulting in a total of 75 speakers and
225 recordings. Being a very small dataset it is not possible to create a training and a test set,
therefore it has been opted for a cross validation (CV) with 5 folds. For this experiment, eight
acoustic (speech tempo, length of utterance, duration of silent and filled pauses (hesitation),
number of silent and filled pauses and hesitation rate) features were manually extracted and
using these features, they performed a new experiment combining MCI and mAD classes.
Therefore in this case the class distribution becomes imbalanced with 25 control subjects and
50 subjects having some kind of cognitive disorder.

Figure 1.2: Manual extraction in Gosztolya.G et al. [1]

After extracting the features, the respective classes were classified with the following
accuracy results:

14 State of the art

Figure 1.3: Results in Gosztolya.G et al. [1]

So in this paper they manage to reach an accuracy of 61.3% for the three classes and 76%
for two classes.
But the experiment on which we based our most was Calzà et al. [4]. Starting from this
approach we have tried a solution to solve the problems that can be found with an extraction of
the features done manually trying to propose an extraction done automatically. For this reason
the following paper will be explained in more detail than the others.

Background paper Calzà et al. [4]

This project has the goal to propose actions and methods to prevent fragility and decline and
to promote the health of the elderly, developing and elaborating tools and networks for early
diagnosis.
In recent years, thanks to the growth of new sophisticated techniques in natural language
processing (NLP) it has been possible to use them to analyze written texts, clinically elicited
expressions and spontaneous production, with the aim of identifying signs of psychiatric
or neurological disorders and extract linguistics derived automatically for the recognition,
classification and description of pathologies. This research is part of the OPLON project
("OPportunities for active and healthy LONgevity"). Inside the framerwork OPLON, they
have worked to produce methods to identify cognitive fragility at an early stage through the
development of spontaneous languages of Italian speakers [4].
Initially they left without a dedicated study so the main objective was to first verify that this
approach was feasible.

Data collection

In this project 96 subjects (48 males, 48 females) have been enrolled, between the ages of 50
and 75 and with at least a junior high school certificate or primary school certificate with high
intellectual interests throughout the life span. The sample was composed of 48 healthy controls
(CON) e 48 subjects with cognitive decline (DEC) [4] [5].

1.1 Manual feature extraction 15

The cognitive decline refers to two categories:

1. Mild Cognitive Impairment MCI: it causes cognitive changes that are serious enough to
be assessed with neuropsychological assessment, but do not affect the individual’s ability
to carry out everyday activities. Experts classify mild cognitive impairment based on the
thinking skills affected:

a. amnestic MCI single domain (a-MCI; 16 subjects: 8 females, 8 males): MCI that
primarily affects memory. A person may start to forget important information that
he or she would previousl have recalled easily, such as appointments, conversations
or recent events.

b. mutiple domain MCI (md-MCI; 16 subjects: 8 females, 8 males): MCI that affects
thinking skills other than memory, including the ability to make sound decisions,
judge the time or sequence of steps needed to complete a complex task, or visual
perception.

2. Early Dementia e-D (16 subjects: 8 females, 8 males): these patients are affected by
cognitive deficits which partially influence everyday life

All the participants were requested to complete the anamnestic interview (anagraphic data;
occupation/retirement; children; familiarity with neurodegenerative pathologies; clinical history
and pharmacotherapy), a neurological assessment and the traditional cognitive battery aimed to
evaluate several cognitive domains: logic, memory, attention, language, visuo-spatial, praxic,
and executive functions [6].
After the traditional neuropsychological assessment, to all partecipants were required to record
their spontaneous speech during the execution of three tasks, elicited by these input sentences:

• "Describe this picture"

• "Describe your typical working day"

• "Describe the last dream you remember"

Data analysis

Spontaneous speech samples were recorded in un quiet room with an Olympus (Linear PCM
Recorder LS-5) in WAV files (44.1 KHZ, 16 bit) placed on a table in front of the subject [4].
Samples were collected during test sessions in the form of audio and were manually transcribed
in order to produce the dialogue orthographic transcription through the use of the Transcriber
software software package. Then choose the "utterance" as the reference unit in the speech

16 State of the art

continuum. Utterances are demarcated by prosody in the speech flow so thanks to "prosodic
interruptions" we can arrive at the identification of their boundaries. The manual detection of
these interruptions was achieved by listening the utterances and splitting the entire dialogues
into turns. In addition, during the transcription process have been annotated a series of paralin-
guistic phenomena such as empty and filled pauses (e.g. "mmmh", "eeh", "ehm"), disfluencies
(e.g. hesitation, stuttering, false star, lapsus) and non-verbal phenomena (e.g. inspirations,
laughs, coughing fits, throat clearing).
Guidelines were also transcribed in order to force transcribers to respect the developed tran-
scription protocol, and this ensured consistency among them during the project.
Finally all the speech fragments in which the interviewer’s speech was present were removed
and all expressions that were selected were subjected to automatic morphological and syntactic
annotation.
More precisely, all the expressions were automatically PoS-tagged and syntactically parsed with
the dependency model used by the Turin University Linguistic Environment - TULE, based on
the TUT - Turin University TreeBank tagset in order to explicit all the morphological, syntactic
and lexical information. Subsequently all the automatically inserted annotations are checked
manually to eliminate all the errors introduced by the automatic tagging procedures.
While for the parameters that come from the discourse acoustic it has been used the "ssvad"
Voice Activity Detector especially developed for interview speech, to segment the recordings
and identify speech vs. non-speech regions and the forced alignment system belonging to the
Kaldi-DNN-ASR package, trained on the APASCI Italian Corpus, for obtaining the temporally
aligned phonetic transcriptions needed to compute various rhythmic and acoustic features.
A multidimensional parameter computation is made and the system performs a quantitative
analysis of the spoken texts, defining rhythmic, acoustic, lexical, morpho-syntactic and syntactic
features.

Experiment

As an evaluation the p-value < 0.05 of the features is determined by using Kolmogorov-Smirnov
nonparametric test. They have decided to use such kind of hypothesis testing technique,
compared with the T-test or the Wilcoxon-MannWhitney test, because the size of the corpus
that has been used is not large enough [4].
For each linguistic task they performed, the features are used as input data for three automatic
classifiers available in the Orange Data Mining tool. The classifiers used are:

• kNN 3-neighbourgs

• Logistic Regression

1.2 Automatic feature extraction 17

• Neural Network classifiers

The training/test sets has been automatically built by the package by random sampling the
entire dataset with a ratio of 80/20% respectively between training and test sets, repeating this
procedure 20 times.
For each classifier as a result they recorded the accuracy and the recall obtaining the following
results:

• kNN 3-neighbourgs: Accuracy=72%, Recall=70%

• Logistic Regression: Accuracy=75%, Recall=76%

• Neural Network classifiers: Accuracy=76%, Recall=75%

1.2 Automatic feature extraction

In addition to studying cases of manual feature extractions we also looked for some approaches
made with automatic extraction. For example, taking the paper Gosztolya.G et al. [1] experiment
again, an automatic extraction is done in addition to the manual extraction. As calculating the
above acoustic markers manually is quite expensive and requires skilled labor, have thought
of using this step. One way of automating it is to use signal processing techniques but this
techniques cannot extract all the features and they cannot distinguish filled pauses from speech.
Therefore in this experiment automatic speech recognition (ASR) was used to extract the initial
features. In particular it was introduced an approach to automatically obtain the time-aligned
phoneme sequence of the utterances, serving as the basis of speech marker extraction. Hence it
was possible to extend the feature set using other features that can be calculated via the phone
labels because now it becomes much cheaper than before.

Figure 1.4: Automatic extraction in Gosztolya.G et al. [1]

18 State of the art

Below are the results obtained with automatic extraction both with the basic and extended
feature set:

Figure 1.5: Result automatic extraction in Gosztolya.G et al. [1]

Calculating the feature set automatically is lower than the extraction done manually reaching
an accuracy of 50.7% for the three classes and 64% for the two classes. Even with the extended
feature set the result improves but remains always lower than the manual in this case reaching
an accuracy of 58.7% for thr three classes and 73.3% for the two classes.
Instead in the study Themistocleous.C et al. [2] it has been tried an automated machine learning
method, using Deep Neural Network Architectures, that aims to identify MCI. Participants for
this study were recruited from the Gothenburg MCI study, and the recordings were conducted
in an isolated environment at the University of Gothenburg. A total of 55 subjects were
chosen, of which 30 were controls and 25 MCI, between 55 and 79 years old. Each vowel
has been segmented in the acoustic signal and vowel formants were measured at multiple
positions. In addition to the acoustic features, the model include as predictors information about
participants’ age and gender. Overall, the classification tasks include the following 24 acoustic
and sociophonetic predictors:

1. Vowel Formants: measure the first five formant frequencies of vowels

2. Fundamental frequency (F0): measure the F0 across the duration of the vowel and
calculated the mean F0, min F0, and max F0.

3. Vowel duration: Vowel duration measured in seconds from vowel onset to vowel offset.

4. Gender: Participants’ gender.

5. Age:Participants’ age.

During the training phase, the neural network learns the acoustic properties that characterize
MCI and HC (healthy controls).
In a “5-fold group cross-validation,” the data are randomized and split into five different folds

1.2 Automatic feature extraction 19

and the network is trained five times. The data has been split into two parts. The first part
consists of the 90% of the data and functions as a training corpus whereas the second part, the
remaining 10% functions as an evaluation set. The results are the following:

Figure 1.6: Results in Themistocleous.C [2]

This figure indicates a comparison of the accuracy scores on the training set. The highest
accuracy was 75%.

Chapter 2

Autoencoder review

"Autoencoding" is a data compression algorithm where the compression and decompression
functions are:

• data-specific

• lossy

• learned automatically from examples rather than engineered by a human

Furthermore, wherever and in any context the name "Autoencoder" is used, the compression
and decompression functions are implemented with neural networks [7].
Autoencoders are:

1. data-specific which means that they are able to compress only data that is similar to that
on which they are trained. Since they learn features specific for the given training data,
they are different than a standard data compression algorithm.

2. lossy which means that the decompressed output is degraded with respect to the initial
input.

3. learned automatically from data examples which means that it is easy to train specialized
instances of the algorithm that will perform well on a specific type of input. Autoencoders
are considered an unsupervised learning technique since they don’t need explicit labels to
train on, but are self-supervised because they generate their own labels from the training
data.

22 Autoencoder review

2.1 Definition Autoencoder

An Autoencoder is an unsupervised learning technique for neural networks that learns efficient
data representations by training the network to ignore signal “noise.”
More precisely, autoencoders work to compress an input into a different representation called
latent-space representation, trying to reconstruct the output from this representation as close
as possible to its original input [8].
This kind of network is composed of two parts :

1. Encoder: This is the part of the network that compresses the input into a latent-space
representation. It can be represented by an encoding function h=f(x).

2. Decoder: This part aims to reconstruct the input from the latent space representation. It
can be represented by a decoding function r=g(h).

Figure 2.1: Architecture of an Autoencoder

The autoencoder as a whole can thus be described by the function g(f(x)) = r where you
want r as close as the original input x.
So to build a autoencoder must take into consider three things: an encoding function, a
decoding function, and a distance function between the amount of information loss between
the compressed representation of data and the decompressed representation (i.e. a "loss"
function). Obviously the parameters of the encoding and decoding functions (in general neural
networks), with respect to the distance function so that they can be optimized to minimize the
reconstruction loss, using the Stochastic Gradient Descent 1. The latter is a method to find the
optimal parameter configuration for a machine learning algorithm. It iteratively makes small
adjustments to a machine learning network configuration to decrease the error of the network.
This loss describes the objective that the autoencoder tries to reach. When the goal is reconstruct
the input as accurately as possible, there are two main loss functions that are usually taken into
consideration:

1https://en.wikipedia.org/wiki/Stochastic_gradient_descent

2.1 Definition Autoencoder 23

• Mean Squared Error (MSE)

• Kullback-Leibler (KL) divergence

2.1.1 Mean Squared Error (MSE)

This metric is probably the simplest and most used metric for regression evaluation.
In statistics, the mean squared error (MSE) 2 of an estimator (of a procedure for estimating
an unobserved quantity) measures the average of the squares of the errors that is, the average
squared difference between the estimated values and what is estimated.
If a vector of N predictions generated from a sample of N data points on all variables, and Y is
the vector of observed values of the variable being predicted, with Ȳ i being the predicted values,
then the within-sample MSE of the predictor is computed as:

MSE =
1
N

N

∑
i=1

(Yi − Ȳi)
2 (2.1)

In the case of autoencoder the mean squared error is defined as the mean of the squared
difference between our network output and the ground truth. For example the encoder output is
a grid of values (i.e an image) the MSE between output image Ī and ground truth image I may
be defined as [9]:

MSE =
1

NM

N

∑
i=1

M

∑
j=1

(Īi j − Ii j)
2 (2.2)

2.1.2 Kullback-Leibler (KL) divergence

In mathematical statistics, the Kullback–Leibler divergence 3 is a measure of how one probability
distribution is different from a second, reference probability distribution.
It is often conceptualized as measuring some sort of distance between these distributions
because first of all the KL divergence is non-negative and secondly because it measures the
difference between two distributions. Surely one of the fundamental properties of this metric is
that it is non-negative. Indeed the KL divergence is equal to 0 if and only if pp and q are the
same distribution in the case of discrete variables, or equal almost everywhere in the case of
continuous variables.
Therefore for discrete probability distributions P and Q defined on the same probability space,

2https://en.wikipedia.org/wiki/Mean_squared_error
3https://en.wikipedia.org/wiki/Kullback-Leibler_divergence

24 Autoencoder review

the Kullback–Leibler divergence of Q from P is defined to be [9]:

DKL(P∥Q) =− ∑
x∈X

P(x)log
(

Q(x)
P(x)

)
(2.3)

In Machine Learning succeed in minimizing the KL divergence means to make the autoencoder
sample its output from a distribution that is similar to the distribution of the input which is just
one of the main properties of the autoencoder to satisfy.

2.2 The use of autoencoders

The main objective of an autoencoder is to minimize the reconstruction error between input
and output. If this happens then the autoencoder is helped to incorporate important features
found in the data. So if a good reconstruction of the input is made then it means that most of
the information present in the input has been preserved.
Nowadays data denoising and the reduction of dimensionality for data visualization are seen
as two main interesting practical applications of autoencoders. Autoencoders are learned
automatically from data examples, this means that it is relatively easy to train specialized
instances of the algorithm that work well on any specific type of input and that it require only
the appropriate training data.
However, autoencoders will perform a poor job for image compression even if as the autoencoder
is trained on a given set of data, it will achieve better but always poor compression results.
In fact the autoencoders are trained to make the new representation have various interesting
properties. Different types of autoencoders tend to reach different types of properties.

2.3 Types of Autoencoder

2.3.1 Denoising Autoencoder

The denoising autoencoder creates a damaged copy of the input going to insert some noise.
This helps to avoid the autoencoders to copy the input to the output without learning features
about the data. These autoencoders take an input that is partially damaged in the training phase
to try to recover the original corrupted input. The corruption of this input can be done randomly,
by making some of the input as zero. Then denoising autoencoder must remove the corruption
to generate an output that is similar to the input.
Finally, the output is compared with both the input and the noised input and to minimize the loss
function, you go on until you reach convergence. This type of autoencoder tries to minimize the

2.3 Types of Autoencoder 25

loss function between the output and the corrupted input. Denoising goes to help autoencoders
to learn the latent representation present in the data and ensures that a good representation can
be reliably derived from a corrupted input that will be very important for recovering clean input.
It is a stochastic autoencoder becouse a stochastic corruption process is used to set some of the
inputs to zero [10].

Figure 2.2: Architecture of a Denoising Autoencoder

2.3.2 Sparse Autoencoder

The sparse autoencoder consists a single hidden layer, which is connected to the input vector
by a weight matrix forming the encoding step. It’s may include more hidden units than inputs,
but only a small number of the hidden units are allowed to be active at once.
The sparse autoencoders have hidden nodes greater than input nodes, this because can discover
important features from the data. Indeed a generic sparse autoencoder the sparsity constraint is
included on the hidden layer, all this to prevent output layer copy input data.
An advancement to sparse autoencoders is the k-sparse autoencoder. With this autoencoder
k neurons are chosen taking the activation functions with the highest value ignoring other
activation functions using ReLU activation functions and adjusting the threshold to find the
largest neurons. This tune the value of k to obtain sparsity level best suited for the dataset [11].

26 Autoencoder review

Figure 2.3: Architecture of a Sparse Autoencoder

2.3.3 Contractive Autoencoder

The contractive autoencoder objective is to have a robust learned representation which is less
sensitive to small variation in the data. To obtain the robustness of this representation for the
data is applied a penalty term to the loss of function. This term is Frobenius norm of the
Jacobian matrix. Frobenius norm of the Jacobian matrix for the hidden layer is calculated with
respect to input and the norm of the Jacobian matrix is the sum of square of all elements.
This autoencoder is another regularization technique like sparse autoencoders and denoising
autoencoders. CAE is a better choice than denoising autoencoder to learn useful feature
extraction [10].

Figure 2.4: Architecture of a Contractive Autoencoder

2.3 Types of Autoencoder 27

2.3.4 Undercomplete Autoencoder

The undercomplete autoencoder 4 is a type of autoencoder that has the hidden dimension is
smaller than the input dimension and this helps to obtain important features from the data. The
goal of the autoencoder is to capture the most important features present in the data.
However, using an overparameterized architecture in case of a lack of sufficient training
data create overfitting and prevents learning of important features. An advantage of the
undercomplete autoencoders is that they do not need any regularization as they maximize
the probability of data rather than copying the input to the output [10].

Figure 2.5: Architecture of a Undercomplete Autoencoder - Hidden layer has smaller dimension
than input layer

2.3.5 Convolutional Autoencoder

Autoencoders traditionally do not take into consideration the fact that a signal can be seen
as a sum of other signals. The convolutional autoencoders use the convolution operator to
exploit this observation. These autoencoders try to learn how to encode input into a set of
very simple signals and and then try to reconstruct the input from them. Once they have been
learned, these filters are used on any input to extract features and then to perform any task such
as classification.

4https://machine-learning-course.readthedocs.io/en/latest/content/deep_learning/autoencoder.html

28 Autoencoder review

Figure 2.6: Architecture of a Convolutional Autoencoder

2.3.6 Variational Autoencoder

A variational autoencoder can be defined as being an autoencoder whose training is regularised
to avoid overfitting and ensure that the latent space has good properties that enable generative
process [12].
The architecture of this autoencoder is composed of both an encoder and a decoder and that is
trained to minimise the reconstruction error between the encoded-decoded data and the initial
data. However, to introduce a regularization of the latent space, the coding-decoding process
must be modified, even if not in a profound way, since instead of encoding the input as a single
point we code it as a distribution on the latent space. The model is then trained as follows:

1. the input is encoded as distribution over the latent space

2. a point from the latent space is sampled from that distribution

3. the sampled point is decoded and the reconstruction error can be computed

4. the reconstruction error is backpropagated through the network

Figure 2.7: Difference between autoencoder (deterministic) and variational autoencoder (proba-
bilistic)

2.4 Example 29

2.3.7 Deep Autoencoder

A deep autoencoder 5 is composed of two, symmetrical deep belief networks, one network for
encoding and another for decoding. Usually consists of four or five shallow layers representing
the encoding half of the net, and second set of four or five layers that make up the decoding
half. This layers are Restricted Boltzmann Machines (RBMs) 6 which are the building blocks of
deep-belief networks, in particular are a two-layered artificial neural network with generative
capabilities. RBMs are a special class of Boltzmann Machines and they are restricted in terms
of the connections between the visible and the hidden units and this makes it easy to implement
them when compared to Boltzmann Machines.

Figure 2.8: Deep Autoencoder)

Deep autoencoders are useful in topic modeling, or statistically modeling abstract topics
that are distributed across a collection of documents. Some advantages of these autoencoders
are surely that can be used for other types of datasets with real-valued data, on which you would
use Gaussian rectified transformations for the RBMs instead and that final encoding is compact
and fast.

2.4 Example

Let’s see some examples where autoencoders can be used:

5https://skymind.ai/wiki/deep-autoencoder
6https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine

30 Autoencoder review

• Image coloring: Autoencoders here are used to convert a black and white image into a
colored image. The color obviously depends on what is in the picture.

Figure 2.9: Example of image coloring

• Feature variation: It extracts only the required features of an image and generates the
output by removing any noise or unnecessary interruption.

Figure 2.10: Example of feature variation

• Dimensionality Reduction: The input image is reconstructed but with reduced dimensions
and all this helps to provide the similar image obtained with a reduced pixel value.

Figure 2.11: Example of dimensionality reduction

2.4 Example 31

• Watermark Removal: Autoencoders also allow you to remove watermarks from images
or to remove anything else while filming a video or a movie.

Figure 2.12: Example of watermark removal

Chapter 3

Data Augmentation

Deep Learning is part of a broader family of machine learning methods based on artificial neural
networks. It is is powerful, but they usually need to be trained on massive amounts of data to
perform well.
Deep learning models trained on small dataset the low performance of versatility and generaliza-
tion from the validation and test set [13]. Therefore a frequent problem to which these models
suffer is over-fitting. A large number of methods have been proposed to solve this problem, one
of which is Data Augmentation.
The data augmentation method is very popular in computer vision and increases both the
quantity and the diversity of the data. It is a very efficient strategy to reduce over-fitting on the
models and improve the diversity of data sets and generalization performances. In particular in
the field of image classification there have been clear general improvements, for example like
flipping the image horizontally or vertically, translating the image by a few pixels and so on.

3.1 Image data augmentation

Image data augmentation is a technique that can be used to artificially expand the size of a
training dataset by creating images with modified versions within the initial data set. Therefore
thanks to the augmentation techniques can create variations of the images that can improve the
ability of the fit models to generalize what they have learned to new images [14].
By transformations we mean a range of operations from the field of image manipulation, such
as shifts, flips, zooms, and much more. For example, a horizontal flip of a picture of a cat may
make sense, because the photo could have been taken from the left or right but a vertical flip
of the photo of a cat does not make sense because it is not very likely that the model is very
unlikely to see a photo of an upside down cat.
Obviously the choice of the specific data augmentation techniques used for a set of training data

34 Data Augmentation

must be chosen in a reasonable manner remaining inherent to the context of the training data set
and to the knowledge of the problematic domain. Some modern deep learning algorithms such
as the convolutional neural network, can learn features that do not vary with respect to their
position in the image though augmentation can further aid in this transform invariant approach
to learning. Usually this image data augmentation is applied only to the training dataset and not
to the validation or test dataset.
Now let’s see some basic but powerful augmentation techniques that are popularly used [15].

1. Flip: It is possible to flip images horizontally and vertically. Some frameworks do not
provide function for vertical flips, but to have a vertical flips it is sufficient to rotate an
image 180 degrees.

Figure 3.1: From the left, we have the original image, followed by the image flipped horizontally,
and then the image flipped vertically

2. Rotation: With this operation it is possible that the size of the initial images may not
be preserved. If the image is a square and is rotated at a right angle to the image size is
preserved. While if the image is rectangular only rotating it 180 degrees it is possible to
preserve the size. The rotation by finer angles changes the final size of the image.

Figure 3.2: The images are rotated by 90 degrees clockwise with respect to the previous one, as
we move from left to right

3. Scale: The image can be scaled outward or inward. If scaling is done outward, the final
size of the image will be larger than the initial size, and most image frameworks will cut
out a section from the new image. If scaling is done inward, the image size is reduced.

3.1 Image data augmentation 35

Figure 3.3: From the left, we have the original image, the image scaled outward by 10%, and
the image scaled outward by 20%

4. Crop: Unlike scaling, a section of the original image is randomly sampled. Subsequently,
the section is resized to the same size as the original image and this method is called
random cropping.

Figure 3.4: From the left, we have the original image, a square section cropped from the top-left,
and then a square section cropped from the bottom-right. The cropped sections were resized to
the original image size

5. Translation: Translation just involves moving the image along the X or Y direction (or
both). In this example we assume that the image has a black background beyond its
boundary, and are translated appropriately. This method of augmentation is very useful
as most objects can be located at almost anywhere in the image.

Figure 3.5: From the left, we have the original image, the image translated to the right, and the
image translated upwards

36 Data Augmentation

6. Gaussian Noise: Overfitting can occur when the neural network attempts to learn high
frequency features that are not useful. Gaussian noise, which has zero mean, essentially
has data points in all frequencies, effectively distorting the high frequency features. This
means that even low-frequency components are distorted and with the addition of the
right amount of noise can improve learning ability.

Figure 3.6: From the left, we have the original image, image with added Gaussian noise, image
with added salt and pepper noise

3.2 Text Augmentation

In natural language processing (NLP) field is difficult to make a good text augmentation due to
high complexity of language. This is because all words cannot be replaced with others and not
all words have a synonym. So this means that even a changed word leads to a different context.
While generating augmented image as seen in the previous section is certainly simpler because
even inserting noise or cropping out portion of image the model can classify the image.
Let us now look at two approaches that are used quite frequently.

3.2.1 Back translation

Back translation [16] is a very popular technique for in-domain data augmentation. In this
experiment [17] the Machine Translation on Noisy Text (MTNT) dataset was back-translated
which contains parallel sentence pairs with comments crawled from Reddit 1 and manual
translations. This dataset contains user-generated text with different kinds of noise (e.g. typos,
grammatical errors, emojis, spoken languages, etc.). The MTNT dataset is used as in-domain
data, where models are trained with clean data and adapted to noisy data.
This dataset was back-translated using a model fine-tuned on MTNT parallel corpus. However,
the goal is to try to improve robustness by producing less noisy outputs, but the data generated

1www.reddit.com

3.2 Text Augmentation 37

with back translation can have noisy target translations (from monolingual data) and less noisy
source texts (from back translation).
To avoid increasing the noise level of the output texts, the forward translation used has also
been experimented using models fine-tuned on the noisy parallel corpus. Pseudo parallel
data generated by forward translation were used for fine tuning models on the same language
direction. While to avoid overfitting they have been merged the noisy parallel data of both
language directions to produce noisy forward translations. The pseudo parallel data generated
by back translation and forward translation have been combined with noisy parallel data and
fine-tuned on the baseline model.

3.2.2 Easy Data Augmentation (EDA)

Easy Data Augmentation (EDA) techniques for boosting performance on text classification
tasks,in particular they use simple heuristics to augment training data. For a given sentence in
the training set, randomly chosen, is performed one of the following operations [18]:

1. Synonym Replacement (SR): Randomly n words are chosen from the sentence exclud-
ing the stop words. Replace each of these words with one of its synonyms chosen at
random.

2. Random Insertion (RI): A synonym of a random word in the sentence is found excluding
a stop word. Insert that synonym into a random position in the sentence. Do this n times.

3. Random Swap (RS): Two words are chosen in the sentence and their positions are
exchanged. Do this n times.

4. Random Deletion (RD): Every word in the sentence is removed with probability p.

Since long sentences have more words than short ones, the latter can assimilate more noise
while maintaining their original class label. for this the number of words n is changed for
Synonym Replacement, Random Insertion and Random Swap based on the sentence length
l with the formula n=αl, where α is a parameter that indicates the percent of the words in a
sentence are changed (we use p=α for Random Deletion).
Thus, for each original sentence, are generated naug augmented sentences.

38 Data Augmentation

Example

Suppose we have this as the original sentence:

The final project is the main assignment of the course.

• SR: The final project is the principal assignment of the course.

• RI: The final project is the main assignment of last the course. (last∼final)

• RS: The final project is the assignment main of the course.

• RD: The final is the main assignment of the course. (project deleted)

Therefore in data augmentation, input data is altered while class labels are maintained. So if the
sentences have a different meaning then original class labels may no longer be valid.
Now let’s see a visualization approach done in the paper[18] to see if EDA operations signifi-
cantly change the meanings of augmented sentences. First, an RNN is trained on the pro-con
classification task (PC) without augmentation. Then the EDA is applied to the test set by gener-
ating nine augmented sentences per original sentence. These are fed into the RNN along with
the original sentences, and we extract the outputs from the last dense layer. t-SNE (t-distributed
stochastic neighbor embedding) are applied to these vectors and plot their 2-D representations.

Figure 3.7: Latent space visualization of original and augmented sentences in the Pro-Con
dataset

From the figure above it can be seen that the resulting latent space representations for
augmented sentences closely surrounded those of the original sentences, which points out that
most sentences augmented with EDA conserved the labels of their original sentences.

3.3 SpecAugment 39

3.3 SpecAugment

The Automatic Speech Recognition (ASR) 2, is a process of taking an audio input and tran-
scribing it to text that has had a net benefit with the continuous development of deep neural
networks. Precisely for this reason it has become present in many modern devices and products
such as Google Assistant, Google Home and YouTube.
Despite all this, several challenges still remain in developing deep learning-based ASR systems.
The main problem we find is that the ASR models have many parameters and this tends to
overfit the training data and therefore consequently they are unable to generalize in order not to
see the data when the training set is not extensive enough.
In the absence of a large number of training data it is possible to increase the size of existing
data through the process of data augmentation which has contributed as seen previously to
improving the performance of deep networks in the domain of image classification and which
for this reason has been proposed as a method to generate additional training data for ASR [19].
In speech recognition, data augmentation occurs with the deformation of the audio waveform
that was used for training. This deformation can be made of any type, for example by speeding
it up or slowing it down or even adding background noise. This allows you to get a data set that
is actually wider because more increased versions of a single input are inserted into the network
during the training course and also allows the network to become more robust by forcing it
to learn relevant features. The problem is that all existing conventional methods introduces
additional computational cost and sometimes requires additional data.
In a recent paper "SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition" [20] a new approach was used that allows to augmenting audio data but treating
them more as a visual problem than an audio problem. So instead of augmenting the input
audio waveform as it was done in the previous methods explained above, the new method called
SpecAugment applies an augmentation policy starting directly from the spectogram of the audio
file and not from the audio waveform. This method used has enormous advantages compared to
the previous ones, starting from the fact that it is certainly cheaper computationally and does
not require further dates than the initial ones.
Thus in the traditional ASR, the audio waveforms are generally encoded as a visual representa-
tion such as a spectogram before being inserted later as a training data for the network. However,
this augmentation of training data is applied to the waveform audio so before it is transformed
into a spectogram, his is because new spectograms can be generated at each iteration to be used.
While for the SpecAugment method we study an approach to try increase the data directly from
the spectogram rather than from the waveform data.

2https://en.wikipedia.org/wiki/Speech_recognition

40 Data Augmentation

Since the augmentation is applied directly to the input features of the network, it can be run
online during training without significantly impacting training speed.

Figure 3.8: A waveform is typically converted into a visual representation before being fed into
a network

The augmentation policy that is construct goes to act directly on the log mel spectrogram
to give the network learn useful features. Specifying that these features should be robust to
deformations in the time direction, partial loss of frequency information and partial loss of
small segments of speech have been chosen the following deformations to make up a policy
[20]:

1. Time warping: Given a log mel spectrogram with τ time steps is seen it as an image
where the time axis is horizontal and the frequency axis is vertical. A random point
along the horizontal line passing through the center of the image within the time steps
(W, τ-W) is to be warped either to the left or right by a distance w chosen from a uniform
distribution from 0 to the time warp parameter W along that line.
So the Time Warp technique simply shifts the spectrogram in time by using interpolation
techniques to squeeze and stretch the data in a randomly chosen direction [21].

Figure 3.9: Time warping a spectrogram

2. Frequency masking: It is applied such that f consecutive mel frequency channels
[f 0,f 0+f) are masked, where f is first chosen from a uniform distribution from 0 to the

3.3 SpecAugment 41

frequency mask parameter F and f 0 is chosen from [0,v-f). v is the number of mel
frequency channels.
So in the frequency masking is masked a randomly chosen band of frequencies with the
mean value of the spectrogram or zero.

Figure 3.10: Frequency masking a spectrogram

3. Time masking: It is applied such that t consecutive time steps [t0,t0+t) are masked,
where t is first chosen from a uniform distribution from 0 to the time mask parameter T,
and t0 is chosen from [0,τ- t).
Put simple in the time masking is masked a randomly chosen lice of time steps with the
mean value of the spectrogram. It appears with time on the X axis and frequency bands
on the Y axis, as we can see in the spectogram below.

Figure 3.11: Time masking a spectrogram

42 Data Augmentation

The final spectrogram with all three techniques applied will be the following:

Figure 3.12: All three augmentations combined on a single spectrogram

Chapter 4

Proposed approach to speech analysis for
Autoencoder

The main problem in the analysis of audio files is mainly the way in which these must be
represented within the analysis system. Typically the audios are converted into a feature vector,
obtained manually or automatically, and then analyzed using machine learning techniques.
In the works done previously and explained in the previous chapter in the state of the art, the
features were extracted or manually then transcribed through a human or automatically [2] [1]
[3] [4].
Our idea was instead to automatically extract features and learn the latter using neural net-
works in particular with the autoencoders and then classify them through machine learning
techniques.Initially we tried to think about the problems that could be created by the extraction
of features performed manually.
The problems we found most were:

1. Using manually transcribed texts may cause a loss of useful information of the original
data.

2. The manually added features such as pauses, lapsus etc.. can be reported differently if it
is not the same person to transcribe them.

3. Therefore a consequence of the previous point implies that this method can be very
expansive and therefore not scalable and standardized.

44 Proposed approach to speech analysis for Autoencoder

So to try to improve the previous methods we tried to avoid using a manually written text but
try to extract the spectograms from the audio files and get through a particular neural network
called Autoencoder which we will explain in the previous chapter, the features. After that they
will be classified. All this will be done using a tool called "auDeep" which is a Python toolkit
for learning unattended functions with deep neural networks (DNN) and the main focus of this
project is feature extraction from audio data with deep recurrent autoencoders.
Furthermore, after trying this method we also tried to expand the starting dataset, not being
large. The technique used is that of the SpecAugment which does nothing more than create new
samples using specific techniques to modify the original data through, as already explained
in the previous chapter. Now let’s start explaining the datasets we started from and then we’ll
explain the work that was done by us.

4.1 Dataset

The first point we started from was definitely the dataset. The starting dataset we used is the
same that was used in the experiment of the state of the art. The original dataset, provided by
the University of Bologna, is composed of 96 participants with an age ranging between 50 and
75 years.
Within it we find 48 participants with cognitive decline in turn divided into 32 with mild
cognitive decline and 16 with early dementia, and the other 48 participants without cognitive
decline. The information on the dataset in more detail is reserved and not accessible to all, in
order to use the dataset a data confidentiality sheet has been signed so that the data will not be
disclosed outside the following project.
The dataset folder is called "test_linguaggio" and within it there are 96 sub folders that cor-
respond to each participant. Inside each sub-folder we find three audio files in WAV format
(44.1KHz, 16 bit) that correspond to the description of a figure, of the working day and of
the last dream done as already explained above. The length of the audio files varies between
approximately 10 seconds to 9 minutes.

4.1 Dataset 45

Figure 4.1: "test_linguaggio" folder
structure

Figure 4.2: "test_linguaggio" folder structure
with .WAV

For our experiment we started from this dataset and we divided it into two parts, one for the
training set and one for the test set. The proportions in which it was divided were 80% for the
training set and 20% for the test set. More precisely we have built two types of datasets:

46 Proposed approach to speech analysis for Autoencoder

1. dataset_1: this dataset is made up of two sub-folders: one for the training set and
one for the test set, called "train" and "devel" respectively. Within them there are
respectively three folders that correspond to the three classes Control (CONT), Mild
Cognitive impairment (MCI) and early Dementia (eD). The division in training and test
sets was done randomly.

Figure 4.3: "dataset_1" folder structure

Figure 4.4: "dataset_1" folder structure with
.WAV

2. dataset_2: this dataset is made up of two sub-folders: one for the training set and one for
the test set, called "train" and "devel" respectively. Within them there are respectively
two folders that correspond to the two classes Control (CON), and Decline (DEC). The
division in training and test sets was done randomly.

4.1 Dataset 47

Figure 4.5: "dataset_2" folder structure

Figure 4.6: "dataset_2" folder structure with
.WAV

The two datasets have been uploaded to Google Drive which is a web service, in a cloud
computing environment, for online storage and synchronization.

48 Proposed approach to speech analysis for Autoencoder

4.2 Software platform: Google Colab

The platform where we performed our experiments is Google Colab 1 also called Colaboratory.
Google has provided free cool service based on Jupyter Notebooks that supports free GPU. It
also allows absolutely anyone to develop deep learning applications using popular libraries such
as PyTorch, TensorFlow, Keras, and OpenCV. Google Colab provides free Tesla K80 GPU of
about 12GB and it’s totally free [22].
However, there are limits in fact it only supports python 2.7 and 3.6 but does not support R
or Scala. In addition, there is also a limit for sessions and sizes, but can be safely solved by
reloading the files. More precisely it is possible to run the session in an interactive Colab
notebook for 12 hours. This is because there may be chances that people use it for wrong
purposes so after 12 hours, you can restart the session again [23].

4.2.1 Create a folder for notebooks

It is possible to create a Colab Notebook in the following way:

Visit Google Drive, Right Click -> More -> Colaboratory or New -> More -> Colaboratory to
start a new Colab Notebook.

Figure 4.7: Create a folder for your notebooks

1https://colab.research.google.com/notebooks/welcome.ipynb

4.2 Software platform: Google Colab 49

4.2.2 Set up free GPU

By default the runtime type is on NONE, which means that the hardware accelerator 2 would
be CPU. Hardware acceleration is the use of computer hardware specially made to perform
some functions more efficiently than is possible in software running on a general-purpose CPU.
Therefore the implementation of computing tasks in hardware to decrease latency and increase
throughput is known as hardware acceleration. So let’s see how to switch from CPU to GPU.
Open the Runtime menu -> Change Runtime Type -> Select GPU.

Figure 4.8: Connecting to Server and Setting up GPU Runtime

4.2.3 Mounting Google Drive to Colab Notebook

So, it is important to connect your session to Google Drive as an external storage.
Running the code below, will help you connect to Google Drive. You will be asked to authorize
through your Google account.

Figure 4.9: Code to Mount Your Google Drive to Colab Notebook

When you execute the code above, click on the link that appears, select the Google account
you wish to connect, copy and paste the authorization code into the box and press Enter.

2https://en.wikipedia.org/wiki/Hardware_acceleration

50 Proposed approach to speech analysis for Autoencoder

Figure 4.10: Pre-Authorization

Once authorized, you can use Google Colab without problems. To be sure that the autho-
rization has been successful, the following result should appear:

Figure 4.11: Post-Authorization

4.3 Experiment

The software used for our experimentation was auDeep 3. The latter based Python software
for deep unsupervised representation learning from acoustic data. All this is achieved using a
recurrent sequence to sequence autoencoder approach. auDeep can be used both through its
Python API as well as through an extensive command line interface [24].

3https://github.com/auDeep/auDeep

4.3 Experiment 51

Figure 4.12: Illustration of the feature learning procedure with auDeep

auDeep contains at its core a high-performing implementation of sequence to sequence
autoencoders which is not specifically constrained to acoustic data, but they are also provided
additional functionality for representation learning from audio. It provides a highly modu-
larised Python library for deep unsupervised representation learning from audio. The core
sequence to sequence autoencoder models are implemented TENSORFLOW. In particular this
implementation extends the built-in sequence to sequence learning capabilities of TensorFlow.
Furthermore, diversely structured data sets are handled by the system in a unified way without
requiring time-consuming manual adjustments and in addition the topology and parameters of
autoencoders are stored as TENSORFLOW checkpoints.
The system is platform-independent, in fact it can be tested on both Windows and different
Linux distributions on desktop PCs and in a cluster environment. auDeep is capable of running
on CPU only, and GPU-acceleration is leveraged automatically when available. In our case as
already mentioned in the previous section thanks to the Google Colab software platform we
have a GPU more precisely a Tesla K80 GPU of about 12GB totally free.

Figure 4.13: audeep folder structure

52 Proposed approach to speech analysis for Autoencoder

Figure 4.14: backend folder structure

Figure 4.15: cli folder structure

4.3.1 Experimental settings

The minimal requirements to install auDeep are listed below.

• Python 3.5

• TkInter (python3-tk package on Ubuntu, selectable during Python install on Windows)

• virtualenv (pip3 install virtualenv)

Now we see below some basic Python dependencies for use that can be installed using the
well-known pip3 command:

4.3 Experiment 53

• cliff

• liac-arff

• matplotlib

• netCDF4

• pandas

• scipy

• sklearn

• tensorflow or tensorflow-gpu 1.13.0

• xarray

In our case we have decided to upload directly to Google Colab the auDeep tool with the git
clone command that clones a repository into a newly created directory, creates remote tracking
branches for each branch in the cloned repository, and creates and checks out an initial branch
that is forked from the cloned repository’s currently active branch.

1. In the figure below it is possible to understand how it was cloned on Google Colab:

Figure 4.16: git clone to auDeep

Warning: in the Google Colab platform before the known installation commands must
be added "!".

54 Proposed approach to speech analysis for Autoencoder

2. Continue by installing auDeep with:

Figure 4.17: Installing auDeep

3. After installing auDeep install the netCDF4 4 library. netCDF4-python is a Python
interface to the netCDF C library and has many features not found in earlier versions of
the library and is implemented on top of HDF5 5. This module can read and write files in
both the new netCDF 4 and the old netCDF 3 format. The version of netCDF4 that must
be installed is 1.4.0 otherwise it will not work:

Figure 4.18: Installing netCDF library version 1.4.0

4https://en.wikipedia.org/wiki/NetCDF
5https://en.wikipedia.org/wiki/Hierarchical_Data_Format

4.3 Experiment 55

4.3.2 Experiment on three classes (CON, MCI, eD)

Overview

Representation learning with auDeep is performed in in about five distinct stages:

1. Extraction of spectrograms and data set metadata from raw audio files (audeep preprocess)

2. Modify data set metadata in various ways (audeep ... modify)

3. Training of a DNN on the extracted spectrograms (audeep ... train)

4. Feature generation using a trained DNN (audeep ... generate)

5. Evaluation of generated features (audeep ... evaluate)

Experiment on dataset_1 (without augmentation)

The first point that is made is to extract spectrograms and some metadata from the raw audio
files. In order to get a general overview of the audio files contained in a data set you can use
this command:

1 !audeep inspect raw --basedir .../dataset_1 --parser audeep.backend.parsers.
partitioned.PartitionedParser

This will print some logging messages, and a table containing information about the data set:

1 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.

set_verbosity instead.
2

3 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.FATAL is deprecated. Please use tf.compat.v1.logging.FATAL

instead.
4

5 [INFO] InspectRaw - reading audio file information
6 +-----------------------------------+
7 | data set information |
8 +------------------------+----------+
9 | number of audio files | 285 |

10 | number of labels | 3 |
11 | cross validation folds | 0 |
12 | minimum sample length | 9.13 s |
13 | maximum sample length | 537.01 s |

56 Proposed approach to speech analysis for Autoencoder

14 | sample rate | 44100 Hz |
15 | channels | 1 |
16 +------------------------+----------+

Listing 4.1: inspect raw

As we can see from the table the dataset_1 data set contains audio files that are between 9.13
seconds and 537.01 seconds long , contain one channel, and are sampled at 44.1 kHz.
Next, we determine suitable parameters for spectrogram extraction. In general auDeep needs a
little larger FTT 6 windows during spectrogram extraction unlike for example the extraction of
MFCCs 7. auDeep works well on mel-spectrograms with a relatively large number of frequency
bands. For the our dataset, we would recommend using 160 ms wide FFT windows with overlap
80 ms, and 256 mel frequency bands.
Use the following command to quickly plot a spectrogram with the parameters recommended
above:

1 !audeep preprocess --basedir .../dataset_1 --parser audeep.backend.parsers.
partitioned.PartitionedParser --window-width 0.16 --window-overlap 0.08 --mel-
spectrum 256 --fixed-length 5 --clip-below -60 --output spectrograms/dataset1
-0.08-0.04-128-60.nc

Here, the window-width 0.16 and window-overlap 0.08 options specify the FFT window width
and overlap in seconds, respectively. While with the command mel-spectrum 256 is indicated
that 256 mel frequency bands should be extracted, fixed-length 5 option indicates that we want
to extract spectrograms from 5 seconds of audio. If samples are shorter than 5 seconds, they are
padded with silence, and if they are longer, they are cut to length. Finally clip-below -60 option
is used to filter a part of the background noise by clipping amplitudes below a certain threshold.
We recommend a threshold around -45 dB to -60 dB as a starting point.
Once the preprocessing command has been started this will be the result:

1 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.

set_verbosity instead.
2

3 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.FATAL is deprecated. Please use tf.compat.v1.logging.FATAL

instead.
4

6https://en.wikipedia.org/wiki/Window_function
7https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

4.3 Experiment 57

5 [INFO] ExtractSpectrograms - parsing data set at /gdrive/My Drive/Colab Notebooks/
Tirocinio-Tesi/AutoEncoder_audio/dataset_1

6 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog104_figura.WAV (1/285)

7 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog104_lavoro.WAV (2/285)

8 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog111_sogno.WAV (3/285)

9 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog116_figura.WAV (4/285)

10 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog116_lavoro.WAV (5/285)

11 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog116_sogno.WAV (6/285)

12 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog117_lavoro.WAV (7/285)

13 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog119_sogno.WAV (8/285)

14 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog41_lavoro.WAV (9/285)

15 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog41_sogno.WAV (10/285)

16 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog42_figura.WAV (11/285)

17 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog43_lavoro.WAV (12/285)

18 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog43_sogno.WAV (13/285)

19 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog45_figura.WAV (14/285)

20 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog45_lavoro.WAV (15/285)

21 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog45_sogno.WAV (16/285)

22 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog57_figura.WAV (17/285)

23 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog71_figura.WAV (18/285)

24 [INFO] ExtractSpectrograms - processing /gdrive/My Drive/Colab Notebooks/Tirocinio-
Tesi/AutoEncoder_audio/dataset_1/devel/CONT/Sog71_sogno.WAV (19/285)

25
26

Listing 4.2: Step 1: Preprocess

58 Proposed approach to speech analysis for Autoencoder

After the command finishes, the extracted spectrograms have been stored in netCDF 4 format in
a file called dataset1-0.08-0.04-128-60.nc.
Before training the autoencoder we are going to apply another command called modify:

1 !audeep modify --input spectrograms/dataset1-0.08-0.04-128-60.nc --output
spectrograms/cross-dataset1-0.08-0.04-128-60.nc --add-cv-setup 20

This command modify data set metadata in various ways. the only options required are in-
put and output, then the rest are optional. in particular we have added the option add to
randomly generate a cross-validation setup for the data set with NUM_FOLDS evenly-sized
non-overlapping folds. In this case as we can see below we used a cross validation with 20 folds:

1 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.

set_verbosity instead.
2

3 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.FATAL is deprecated. Please use tf.compat.v1.logging.FATAL

instead.
4

5 [INFO] audeep.backend.data.data_set - loading data set from spectrograms/dataset1
-0.08-0.04-128-60.nc

6 [INFO] audeep.backend.data.eval_tools - label information available - balancing
classes between folds

7 [INFO] DataSet - writing data set as netCDF4 to spectrograms/cross-dataset1
-0.08-0.04-128-60.nc

Listing 4.3: Step 2: Cross Validation

Therefore once the cross validation is done with the modify option we are going to train the
autoencoder. More precisely we are going to train a recurrent sequence to sequence autoencoder
on the spectrograms extracted in the previous step. Many parameters can be used to fine-tune
autoencoder training. In our case we use parameter choices that we have found to work well
during our preliminary experiments.
We are going to train an autoencoder with 2 recurrent layers (num-layers 2) containing 256 GRU
cells (num-units 256, GRU is used by default) in the encoder and decoder. The encoder RNN is
going to be unidirectional (default setting). When it comes to encoders it has been discovered
that depth has not had a bad impact on skill and more surprisingly, a 1-layer unidirectional
model performs only slightly worse than a 4-layer unidirectional configuration [25]. While the
decoder RNN is going to be bidirectional (bidirectional-decoder). The training was carried

4.3 Experiment 59

out for 128 epochs (num-epochs 128) with learning rate 0.001 (learning-rate 0.001) and 20%
dropout (keep-prob 0.8). The batch size during training was chosen 64 (batch-size 64).

1 !audeep t-rae train --input spectrograms/cross-dataset1-0.08-0.04-128-60.nc --run-
name output/dataset1-0.08-0.04-128-60/t-2x256-x-b --num-epochs 128 --batch-size
64 --learning-rate 0.001 --keep-prob 0.8 --num-layers 2 --num-units 256 --
bidirectional-decoder

The input option specifies the spectrogram file which contains training data in this case is
cross-dataset1-0.08-0.04-128-60.nc which is the dataset after having carried out the cross
validation of 20 folds. The run-name option specifies a directory for the training run in which
models and logging information are stored.

1 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.

set_verbosity instead.
2

3 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.FATAL is deprecated. Please use tf.compat.v1.logging.FATAL

instead.
4

5 [INFO] numexpr.utils - NumExpr defaulting to 2 threads.
6 [INFO] TrainTimeAutoencoder - created temporary file /tmp/tmpb683lfnx/cross-dataset1

-0.08-0.04-128-60.nc-0 for data set spectrograms/cross-dataset1-0.08-0.04-128-60.
nc

7 [INFO] audeep.backend.data.data_set - loading data set from spectrograms/cross-
dataset1-0.08-0.04-128-60.nc

8 [INFO] audeep.backend.data.export - writing data set as TFRecords to /tmp/tmpb683lfnx
/cross-dataset1-0.08-0.04-128-60.nc-0

9 [WARNING] TimeAutoencoder - ’decoder_feed_previous_prob’ set on bidirectional decoder
will be ignored. If you have set --decoder-feed-prob 0, or omitted the option,

the network will behave as expected and you can safely ignore this warning.
10 [INFO] TimeAutoencoderWrapper - building computation graph
11 [INFO] GraphWrapper - initializing variables
12 [INFO] TimeAutoencoderWrapper - preparing input queues
13 [INFO] TimeAutoencoderWrapper - epoch 1/128, batch 1/5, loss: 0.4403 (4.144 seconds)
14 [INFO] TimeAutoencoderWrapper - epoch 1/128, batch 2/5, loss: 0.3767 (0.735 seconds)
15 [INFO] TimeAutoencoderWrapper - epoch 1/128, batch 3/5, loss: 0.3356 (0.609 seconds)
16 [INFO] TimeAutoencoderWrapper - epoch 1/128, batch 4/5, loss: 0.3236 (0.653 seconds)
17 [INFO] TimeAutoencoderWrapper - epoch 1/128, batch 5/5, loss: 0.3040 (0.606 seconds)
18 [INFO] TimeAutoencoderWrapper - epoch 2/128, batch 1/5, loss: 0.2947 (0.565 seconds)
19 [INFO] TimeAutoencoderWrapper - epoch 2/128, batch 2/5, loss: 0.2872 (0.450 seconds)
20 [INFO] TimeAutoencoderWrapper - epoch 2/128, batch 3/5, loss: 0.2784 (0.453 seconds)

60 Proposed approach to speech analysis for Autoencoder

21 [INFO] TimeAutoencoderWrapper - epoch 2/128, batch 4/5, loss: 0.2779 (0.461 seconds)
22 [INFO] TimeAutoencoderWrapper - epoch 2/128, batch 5/5, loss: 0.2745 (0.453 seconds)
23 [INFO] TimeAutoencoderWrapper - epoch 3/128, batch 1/5, loss: 0.2640 (0.459 seconds)
24 [INFO] TimeAutoencoderWrapper - epoch 3/128, batch 2/5, loss: 0.2582 (0.464 seconds)
25 [INFO] TimeAutoencoderWrapper - epoch 3/128, batch 3/5, loss: 0.2479 (0.457 seconds)
26 [INFO] TimeAutoencoderWrapper - epoch 3/128, batch 4/5, loss: 0.2539 (0.463 seconds)
27 [INFO] TimeAutoencoderWrapper - epoch 3/128, batch 5/5, loss: 0.2454 (0.463 seconds)
28 [INFO] TimeAutoencoderWrapper - epoch 4/128, batch 1/5, loss: 0.2431 (0.439 seconds)
29 [INFO] TimeAutoencoderWrapper - epoch 4/128, batch 2/5, loss: 0.2376 (0.493 seconds)
30 [INFO] TimeAutoencoderWrapper - epoch 4/128, batch 3/5, loss: 0.2286 (0.464 seconds)
31 [INFO] TimeAutoencoderWrapper - epoch 4/128, batch 4/5, loss: 0.2320 (0.464 seconds)
32 [INFO] TimeAutoencoderWrapper - epoch 4/128, batch 5/5, loss: 0.2270 (0.463 seconds)
33 [INFO] TimeAutoencoderWrapper - epoch 5/128, batch 1/5, loss: 0.2278 (0.469 seconds)
34 [INFO] TimeAutoencoderWrapper - epoch 5/128, batch 2/5, loss: 0.2269 (0.458 seconds)
35 [INFO] TimeAutoencoderWrapper - epoch 5/128, batch 3/5, loss: 0.2210 (0.439 seconds)
36 [INFO] TimeAutoencoderWrapper - epoch 5/128, batch 4/5, loss: 0.2233 (0.465 seconds)
37 [INFO] TimeAutoencoderWrapper - epoch 5/128, batch 5/5, loss: 0.2201 (0.454 seconds)
38 [INFO] TimeAutoencoderWrapper - epoch 6/128, batch 1/5, loss: 0.2171 (0.443 seconds)
39 [INFO] TimeAutoencoderWrapper - epoch 6/128, batch 2/5, loss: 0.2119 (0.443 seconds)
40 [INFO] TimeAutoencoderWrapper - epoch 6/128, batch 3/5, loss: 0.2106 (0.448 seconds)
41 [INFO] TimeAutoencoderWrapper - epoch 6/128, batch 4/5, loss: 0.2055 (0.462 seconds)
42 [INFO] TimeAutoencoderWrapper - epoch 6/128, batch 5/5, loss: 0.2077 (0.442 seconds)
43 [INFO] TimeAutoencoderWrapper - epoch 7/128, batch 1/5, loss: 0.2072 (0.452 seconds)
44 [INFO] TimeAutoencoderWrapper - epoch 7/128, batch 2/5, loss: 0.2041 (0.510 seconds)
45 [INFO] TimeAutoencoderWrapper - epoch 7/128, batch 3/5, loss: 0.2100 (0.476 seconds)
46 [INFO] TimeAutoencoderWrapper - epoch 7/128, batch 4/5, loss: 0.2056 (0.451 seconds)
47 [INFO] TimeAutoencoderWrapper - epoch 7/128, batch 5/5, loss: 0.2040 (0.454 seconds)
48 [INFO] TimeAutoencoderWrapper - epoch 8/128, batch 1/5, loss: 0.2086 (0.459 seconds)
49 [INFO] TimeAutoencoderWrapper - epoch 8/128, batch 2/5, loss: 0.2002 (0.458 seconds)
50 [INFO] TimeAutoencoderWrapper - epoch 8/128, batch 3/5, loss: 0.1989 (0.474 seconds)
51 [INFO] TimeAutoencoderWrapper - epoch 8/128, batch 4/5, loss: 0.1982 (0.444 seconds)
52 [INFO] TimeAutoencoderWrapper - epoch 8/128, batch 5/5, loss: 0.1928 (0.461 seconds)
53 [INFO] TimeAutoencoderWrapper - epoch 9/128, batch 1/5, loss: 0.1964 (0.457 seconds)
54 [INFO] TimeAutoencoderWrapper - epoch 9/128, batch 2/5, loss: 0.1943 (0.465 seconds)
55 [INFO] TimeAutoencoderWrapper - epoch 9/128, batch 3/5, loss: 0.1931 (0.515 seconds)
56 [INFO] TimeAutoencoderWrapper - epoch 9/128, batch 4/5, loss: 0.1942 (0.462 seconds)
57 [INFO] TimeAutoencoderWrapper - epoch 9/128, batch 5/5, loss: 0.1941 (0.449 seconds)
58
59

Listing 4.4: Step 3: Training Autoencoder

4.3 Experiment 61

Once that training is finished you can use the trained autoencoder to generate features from
spectrograms. If there were no errors using the previous commands we can now execute the
following command:

1 !audeep t-rae generate --model-dir output/dataset1-0.08-0.04-128-60/t-2x256-x-b/logs
--input spectrograms/cross-dataset1-0.08-0.04-128-60.nc --output output/dataset1
-0.08-0.04-128-60/representations.nc

The model-dir option specifies the directory containing TensorFlow checkpoints for the trained
autoencoder, in our specific case is the logs subdirectory of the directory passed to the run-name
option during autoencoder training. The input option specifies the spectrogram file for which we
wish to generate features (in this case is cross-dataset1-0.08-0.04-128-60.nc), and the output
option specifies a file where to store the generated features.
This command extracts the learned hidden representation of each spectrogram as its feature
vector, and store these features in the output file.

1 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.

set_verbosity instead.
2

3 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.FATAL is deprecated. Please use tf.compat.v1.logging.FATAL

instead.
4

5 [INFO] numexpr.utils - NumExpr defaulting to 2 threads.
6 [INFO] audeep.backend.data.data_set - loading data set from spectrograms/cross-

dataset1-0.08-0.04-128-60.nc
7 [INFO] TimeAutoencoderWrapper - building computation graph
8 [INFO] GraphWrapper - restoring variables from output/dataset1-0.08-0.04-128-60/t-2

x256-x-b/logs/model-640
9 [INFO] TimeAutoencoderWrapper - processed batch 1/1

10 [INFO] DataSet - writing data set as netCDF4 to output/dataset1-0.08-0.04-128-60/
representations.nc

Listing 4.5: Step 4: Generate

Therefore instance labels and a cross-validation setup have been stored, we can now use them
to evaluate a simple classifier on the learned representations. The idea is to use the built-in
multilayer perceptron 8 (MLP) for classification. MLP utilizes a supervised learning technique
called backpropagation for training. Its multiple layers and non-linear activation distinguish
MLP from a linear perceptron and can distinguish data that is not linearly separable. In the our

8https://en.wikipedia.org/wiki/Multilayer_perceptron

62 Proposed approach to speech analysis for Autoencoder

case we have built MLP with 4 hidden layers (num-layers 4) and 128 hidden units for layer
(num-units 128). Training was performed for 400 epochs (num-epochs 400) with learning rate
0.001 (learning rate 0.001) and 20% dropout (keep-prob 0.8). No batching is used during MLP
training. The repeat option repeat evaluation 20 times, and report mean results.

1 !audeep mlp evaluate --input output/dataset1-0.08-0.04-128-60/representations.nc --
cross-validate --shuffle --num-epochs 400 --learning-rate 0.001 --keep-prob 0.8 --
num-layers 4 --num-units 128 --repeat 20

The input option points to a file containing generated features, and while with cross-validate
option tells the command to perform cross-validated evaluation using the setup stored in that file.
The shuffle option specifies that the training data should be shuffled between training epochs,
which can improve generalization of the network.
The command will print classification accuracy on each cross validation fold, as well as average
classification accuracy and a confusion matrix.

1 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.

set_verbosity instead.
2

3 [WARNING] tensorflow - From /usr/local/lib/python3.6/dist-packages/audeep/main.py:98:
The name tf.logging.FATAL is deprecated. Please use tf.compat.v1.logging.FATAL

instead.
4

5 [INFO] audeep.backend.data.data_set - loading data set from output/dataset1
-0.08-0.04-128-60/representations.nc

6 [INFO] CrossValidatedEvaluation - processing cross validation fold 1...
7 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:23: FutureWarning:

Conversion of the second argument of issubdtype from ‘float‘ to ‘np.floating‘ is
deprecated. In future, it will be treated as ‘np.float64 == np.dtype(float).type‘.

8 if np.issubdtype(dtype, float):
9 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:25: FutureWarning:

Conversion of the second argument of issubdtype from ‘int‘ to ‘np.signedinteger‘
is deprecated. In future, it will be treated as ‘np.int64 == np.dtype(int).type‘.

10 elif np.issubdtype(dtype, int):
11 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:29: FutureWarning:

Conversion of the second argument of issubdtype from ‘complex‘ to ‘np.
complexfloating‘ is deprecated. In future, it will be treated as ‘np.complex128
== np.dtype(complex).type‘.

12 elif np.issubdtype(dtype, complex):

4.3 Experiment 63

13 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:23: FutureWarning:
Conversion of the second argument of issubdtype from ‘float‘ to ‘np.floating‘ is
deprecated. In future, it will be treated as ‘np.float64 == np.dtype(float).type‘.

14 if np.issubdtype(dtype, float):
15 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:25: FutureWarning:

Conversion of the second argument of issubdtype from ‘int‘ to ‘np.signedinteger‘
is deprecated. In future, it will be treated as ‘np.int64 == np.dtype(int).type‘.

16 elif np.issubdtype(dtype, int):
17 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:29: FutureWarning:

Conversion of the second argument of issubdtype from ‘complex‘ to ‘np.
complexfloating‘ is deprecated. In future, it will be treated as ‘np.complex128
== np.dtype(complex).type‘.

18 elif np.issubdtype(dtype, complex):
19 [INFO] CrossValidatedEvaluation - fold 1 accuracy is 68.75% (UAR 60.28%)
20 [INFO] CrossValidatedEvaluation - processing cross validation fold 2...
21 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:23: FutureWarning:

Conversion of the second argument of issubdtype from ‘float‘ to ‘np.floating‘ is
deprecated. In future, it will be treated as ‘np.float64 == np.dtype(float).type‘.

22 if np.issubdtype(dtype, float):
23 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:25: FutureWarning:

Conversion of the second argument of issubdtype from ‘int‘ to ‘np.signedinteger‘
is deprecated. In future, it will be treated as ‘np.int64 == np.dtype(int).type‘.

24 elif np.issubdtype(dtype, int):
25 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:29: FutureWarning:

Conversion of the second argument of issubdtype from ‘complex‘ to ‘np.
complexfloating‘ is deprecated. In future, it will be treated as ‘np.complex128
== np.dtype(complex).type‘.

26 elif np.issubdtype(dtype, complex):
27 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:23: FutureWarning:

Conversion of the second argument of issubdtype from ‘float‘ to ‘np.floating‘ is
deprecated. In future, it will be treated as ‘np.float64 == np.dtype(float).type‘.

28 if np.issubdtype(dtype, float):
29 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:25: FutureWarning:

Conversion of the second argument of issubdtype from ‘int‘ to ‘np.signedinteger‘
is deprecated. In future, it will be treated as ‘np.int64 == np.dtype(int).type‘.

30 elif np.issubdtype(dtype, int):
31 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:29: FutureWarning:

Conversion of the second argument of issubdtype from ‘complex‘ to ‘np.
complexfloating‘ is deprecated. In future, it will be treated as ‘np.complex128
== np.dtype(complex).type‘.

32 elif np.issubdtype(dtype, complex):

64 Proposed approach to speech analysis for Autoencoder

33 [INFO] CrossValidatedEvaluation - fold 2 accuracy is 68.75% (UAR 60.28%)
34 [INFO] CrossValidatedEvaluation - processing cross validation fold 3...
35 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:23: FutureWarning:

Conversion of the second argument of issubdtype from ‘float‘ to ‘np.floating‘ is
deprecated. In future, it will be treated as ‘np.float64 == np.dtype(float).type‘.

36 if np.issubdtype(dtype, float):
37 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:25: FutureWarning:

Conversion of the second argument of issubdtype from ‘int‘ to ‘np.signedinteger‘
is deprecated. In future, it will be treated as ‘np.int64 == np.dtype(int).type‘.

38 elif np.issubdtype(dtype, int):
39 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:29: FutureWarning:

Conversion of the second argument of issubdtype from ‘complex‘ to ‘np.
complexfloating‘ is deprecated. In future, it will be treated as ‘np.complex128
== np.dtype(complex).type‘.

40 elif np.issubdtype(dtype, complex):
41 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:23: FutureWarning:

Conversion of the second argument of issubdtype from ‘float‘ to ‘np.floating‘ is
deprecated. In future, it will be treated as ‘np.float64 == np.dtype(float).type‘.

42 if np.issubdtype(dtype, float):
43 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:25: FutureWarning:

Conversion of the second argument of issubdtype from ‘int‘ to ‘np.signedinteger‘
is deprecated. In future, it will be treated as ‘np.int64 == np.dtype(int).type‘.

44 elif np.issubdtype(dtype, int):
45 /usr/local/lib/python3.6/dist-packages/xarray/core/dtypes.py:29: FutureWarning:

Conversion of the second argument of issubdtype from ‘complex‘ to ‘np.
complexfloating‘ is deprecated. In future, it will be treated as ‘np.complex128
== np.dtype(complex).type‘.

46 elif np.issubdtype(dtype, complex):
47 [INFO] CrossValidatedEvaluation - fold 3 accuracy is 68.75% (UAR 57.78%)
48 [INFO] CrossValidatedEvaluation - processing cross validation fold 4...
49
50

Listing 4.6: Step 5: Evaluation

Below are the results obtained and the related confusion matrix with the dataset_1 in three
classes (CON, MCI, eD) without using the data augmentation technique:

4.3 Experiment 65

Figure 4.19: Confusion matrix on dataset_1 (without augmentation)

Therefore, as an accuracy value with the dataset_1 without augmentation, 65,23% has
been reached and is significantly lower than the results seen in the state of the art since it was
achieved as the best result on 76% of accuracy value [4] [1].

Experiment on dataset_1 (with augmentation)

As previously seen, the result obtained with the initial dataset using autoencoders did not lead to
a good result.For this reason we have decided to use a technique known and used above all for
the classification of the images that is the data augmentation. In particular we used a technique
explained in the paper Daniel Park et al. [20], called SpecAugment. This method increases the
size of the dataset by deforming the spectrograms of the audio files through three techniques:

1. Time warping: shifts the spectrogram in time by using interpolation techniques to squeeze
and stretch the data in a randomly chosen direction.

2. Time masking: mask a randomly chosen slice of time steps with the mean value of the
spectrogram or zero.

3. Frequency masking: mask a randomly chosen band of frequencies with the mean value of
the spectrogram or zero.

So we implemented a code able to modify the spectrogram dataset and therefore increasing it
with respect to the original. Below we can see the code of the spec_augment.py:

1 import logging
2 from typing import Union, Sequence, Mapping
3

4 import numpy as np
5 import tensorflow as tf
6 import matplotlib.pyplot as plt
7

8 from audeep.backend.data.data_set import DataSet, Partition, empty
9 from specAugment import spec_augment_tensorflow

66 Proposed approach to speech analysis for Autoencoder

10

11

12 import librosa
13 import librosa.display
14 import tensorflow as tf
15 from tensorflow.contrib.image import sparse_image_warp
16 import numpy as np
17 import matplotlib.pyplot as plt
18

19

20

21

22 def _invert_label_map(label_map: Mapping[str, int]) -> Mapping[int, str]:
23 """
24 Invert the label map of a data set.
25

26 Since we know that label maps are always bijective, no additional checks have to
be performed.

27

28 Parameters
29 ----------
30 label_map: map of str to int
31 The label map of a data set
32

33 Returns
34 -------
35 map of int to str
36 The inverted label map, which maps numeric label values to nominal label

values
37 """
38 # noinspection PyTypeChecker
39 return dict(map(reversed, label_map.items()))
40

41

42 def augment(data_set: DataSet,
43 partitions: Union[Partition, Sequence[Partition]] = None) -> DataSet:
44 """
45 Generate new data to balance classes in the specified partitions of the specified

data set.
46

47 If ‘partitions‘ is set, instances in the specified partitions are repeated so
that each class has approximately the

48 same number of instances. Any partitions present in the data set, but not
specified as parameters to this function

4.3 Experiment 67

49 are left unchanged.
50

51 If ‘partitions‘ is empty or None, the entire data set is upsampled.
52

53 If an instance is upsampled, the string "upsampled.I", where I indicates the
repetition index, is appended to the

54 filename.
55

56 Parameters
57 ----------
58 data_set: DataSet
59 The data set in which classes should be balanced
60 partitions: Partition or list of Partition
61 The partitions in which classes should be balanced
62 Returns
63 -------
64 DataSet
65 A new data set in which the classes in the specified partitions are balanced
66 """
67 print("Begin Upsampling")
68

69 log = logging.getLogger(__name__)
70

71 if isinstance(partitions, Partition):
72 partitions = [partitions]
73

74 inverse_label_map = _invert_label_map(data_set.label_map)
75

76 if partitions is None:
77 keep_data = None
78 upsample_data = data_set
79

80 log.debug("upsampling entire data set")
81 else:
82 partitions_to_keep = [x for x in Partition if x not in partitions]
83

84 # noinspection PyTypeChecker
85 log.debug("upsampling partition(s) %s, keeping partition(s) %s", [x.name for

x in partitions],
86 [x.name for x in partitions_to_keep])
87

88 keep_data = None if not partitions_to_keep else data_set.partitions(
partitions_to_keep)

89

68 Proposed approach to speech analysis for Autoencoder

90 if keep_data is not None:
91 upsample_data = data_set.partitions(partitions)
92 else:
93 upsample_data = data_set
94

95 labels = upsample_data.labels_numeric
96 unique, unique_count = np.unique(labels, return_counts=True)
97

98

99 upsample_factors = [2,2,2]
100

101 print(’Upsample factors:’,upsample_factors)
102

103 num_instances = (0 if keep_data is None else keep_data.num_instances) + np.sum(
upsample_factors * unique_count)

104

105 print(’Number of instances:’,num_instances)
106

107 log.info("upsampling with factors %s for labels %s, resulting in %d instances
total", upsample_factors,

108 [inverse_label_map[x] for x in unique], num_instances)
109

110 print(’upsampling with factors %s for labels %s, resulting in %d instances total’,
upsample_factors,

111 [inverse_label_map[x] for x in unique], num_instances)
112

113 upsample_map = dict(zip(unique, upsample_factors))
114

115 # noinspection PyTypeChecker
116 new_data = empty(num_instances, list(zip(data_set.feature_dims, data_set.

feature_shape)), data_set.num_folds)
117 new_data.label_map = data_set.label_map
118

119 new_index = 0
120

121 if keep_data is not None:
122 # just copy instances we are not upsampling
123 for index in keep_data:
124 new_instance = new_data[new_index]
125 old_instance = keep_data[index]
126

127 new_instance.filename = old_instance.filename
128 new_instance.chunk_nr = old_instance.chunk_nr
129 new_instance.label_nominal = old_instance.label_nominal

4.3 Experiment 69

130 new_instance.cv_folds = old_instance.cv_folds
131 new_instance.partition = old_instance.partition
132 new_instance.features = old_instance.features
133

134 new_index += 1
135

136 for index in upsample_data:
137 old_instance = upsample_data[index]
138

139 print("Primo step")
140

141 for i in range(upsample_map[old_instance.label_numeric]):
142 # repeat instance according to upsampling factor for the respective class
143 new_instance = new_data[new_index]
144

145 new_instance.filename = old_instance.filename + ".upsampled.%d" % (i + 1)
146 new_instance.chunk_nr = old_instance.chunk_nr
147 new_instance.label_nominal = old_instance.label_nominal
148 new_instance.cv_folds = old_instance.cv_folds
149 new_instance.partition = old_instance.partition
150 print("Secondo step")
151 new_instance.features = spec_augment_tensorflow.spec_augment(old_instance.

features, time_warping_para=10, frequency_masking_para=10, time_masking_para=10,
frequency_mask_num=1, time_mask_num=1)

152 print("Terzo step")
153

154 new_index += 1
155

156

157 return new_data
158

159

160

161 from pathlib import Path
162

163 from cliff.command import Command
164

165 from audeep.backend.data.data_set import Partition, load
166 from audeep.backend.data.upsample import upsample
167 from audeep.backend.enum_parser import EnumType
168

169 data_set = load(Path("/home/devid29/Scrivania/SpecAugment/in/dataset1
-0.08-0.04-128-60.nc")) # initial dataset with three classes

170

70 Proposed approach to speech analysis for Autoencoder

171 upsampled_data_set = augment(data_set, None)
172 print(upsampled_data_set)
173 upsampled_data_set.save(Path("/home/devid29/Scrivania/SpecAugment/out/augmentttt-

dataset1-0.08-0.04-128-60.nc")) #augment dataset with three classes

Listing 4.7: spec_augment.py

This code was executed locally and not on Google Colab because there were some problems
with some libraries. Once the code is executed the new increased dataset is generated:

Figure 4.20: Comparison on the size of the original dataset_1 and dataset_1 augment

As you can see from the figure above the size of the original 18M dataset becomes 35M
thanks to the specAugment method.
After increasing the dataset, we performed the same experiment that was done with the original
dataset.

Figure 4.21: Confusion matrix augment dataset_1

So after doing the new experiment with the new dataset augment we were able to arrive at
an accuracy of 86.98% clearly better than the previous experiment but above all better than the
state of the art [4] [1].

Methods Accuracy Recall
Autoencoder 65.23% 56.88%3 classes

(CON, MCI, eD) Autoencoder +
Augmented dataset

86.98% 83.28%

Table 4.1: Table with results on dataset_1 with 3 classes (CON, MCI, eD) between original
dataset and augment dataset

4.3 Experiment 71

4.3.3 Experiment on two classes (CON, DEC)

After performing the experiment on three classes Control (CON), Mild Cognitive Impairment
(MCI) and early Dementia, we performed the same experiment but only two classes of subjects:
Control (CON) therefore subjects not affected by cognitive decline and Decline (DEC) those
subject to cognitive decline.

Experiment on dataset_2 (without augmentation)

First of all, let’s extract the spectrograms and some metadata from the raw audio files. We use
the command inspect raw:

1 !audeep inspect raw --basedir .../dataset_2 --parser audeep.backend.parsers.
partitioned.PartitionedParser

Immediately after we go to preprocess the audio extracting the spectrograms with the same
parameters used in the previous experiment with three classes:

1 !audeep preprocess --basedir .../dataset_2 --parser audeep.backend.parsers.
partitioned.PartitionedParser --window-width 0.16 --window-overlap 0.08 --mel-
spectrum 256 --fixed-length 5 --clip-below -60 --output spectrograms/dataset2
-0.08-0.04-128-60.nc

Then the spectrograms are stored in the netCDF 4 format in a file called dataset2-0.08-0.04-
128-60.nc.
Before training the autoencoder we execute the modify command to modify the metadata of the
dataset. In this case we used a cross validation with 20 folds.

1 !audeep modify --input spectrograms/dataset2-0.08-0.04-128-60.nc --output
spectrograms/cross-dataset2-0.08-0.04-128-60.nc --add-cv-setup 20

Now let’s train the autoencoder identical to the one used in the previous experiment and with
the same parameters.

1 !audeep t-rae train --input spectrograms/cross-dataset2-0.08-0.04-128-60.nc --run-
name output/dataset2-0.08-0.04-128-60/t-2x256-x-b --num-epochs 128 --batch-size
64 --learning-rate 0.001 --keep-prob 0.8 --num-layers 2 --num-units 256 --
bidirectional-decoder

72 Proposed approach to speech analysis for Autoencoder

Once that training is finished you can use the trained autoencoder to generate features from
spectrograms.

1 !audeep t-rae generate --model-dir output/dataset2-0.08-0.04-128-60/t-2x256-x-b/logs
--input spectrograms/cross-dataset2-0.08-0.04-128-60.nc --output output/dataset2
-0.08-0.04-128-60/representations.nc

Once instance labels and a cross-validation setup have been stored, we can now use them to
evaluate a simple classifier on the learned representations.

1 !audeep mlp evaluate --input output/dataset2-0.08-0.04-128-60/representations.nc --
cross-validate --shuffle --num-epochs 400 --learning-rate 0.001 --keep-prob 0.8 --
num-layers 4 --num-units 128 --repeat 20

Below are the results obtained and the related confusion matrix with the dataset_2 in two classes
(CON, DEC) without using the data augmentation technique:

Figure 4.22: Confusion matrix on dataset_2 (without augmentation)

Therefore, as an accuracy value with the dataset_2 without augmentation, 77.26% has been
reached. This result, however, is lower than the state of the art [1] [3] [2] which carries out the
same experiment dividing the dataset into two classes as in ours, arriving at 81% accuracy.

Experiment on dataset_2 (with augmentation)

Therefore to improve our accuracy result we tried to use the same technique as previously seen,
that of the SpecAugment [20].
Here too we can reuse the same code used for the three classes by modifying just a few lines of
code as we see below:

1 """
2 ATTENTION: Change the variable upsample_factors = [2,2,2] with upsample_factors =

[2,2] because in this case we have only two sampling classes.
3

4.3 Experiment 73

4 upsample_factors = [2,2,2] -----> upsample_factors = [2,2]
5

6 """
7

8 from pathlib import Path
9

10 from cliff.command import Command
11

12 from audeep.backend.data.data_set import Partition, load
13 from audeep.backend.data.upsample import upsample
14 from audeep.backend.enum_parser import EnumType
15

16 data_set = load(Path("/home/devid29/Scrivania/SpecAugment/in/dataset2
-0.08-0.04-128-60.nc")) # initial dataset with two classes

17

18 upsampled_data_set = augment(data_set, None)
19 print(upsampled_data_set)
20 upsampled_data_set.save(Path("/home/devid29/Scrivania/SpecAugment/out/augmentttt-

dataset2-0.08-0.04-128-60.nc")) #augment dataset with two classes

Listing 4.8: spec_augment.py

The only changes to be made are the paths to the dataset folder and the "upsample_factors"
variable present in the "augment" function inside the specAugment.py file which must be
changed from three to two classes. Then the code can be executed and if there are no errors the
new increased dataset will be returned.

Figure 4.23: Comparison on the size of the original dataset_2 and dataset_2 augment

As you can see from the figure above the size of the original 17M dataset becomes 34M
thanks to the specAugment method.
After increasing the dataset_2, we performed the same experiment that was done with the
original dataset.

74 Proposed approach to speech analysis for Autoencoder

Figure 4.24: Confusion matrix augment dataset_2

So after doing the new experiment with the new dataset augment we were able to arrive at
an accuracy of 90.57% clearly better than the previous experiment but above all better than the
state of the art [1] [3] [2].

Methods Accuracy Recall
Autoencoder 77.26% 77.35%2 classes

(CON, DEC) Autoencoder +
Augmented dataset

90.57% 90.56%

Table 4.2: Table with results on dataset_2 with 2 classes (CON, DEC) between original dataset
and augment dataset

4.4 Results 75

4.4 Results

In summary we can see from the tables below the results obtained by us and those of the state
of the art. In the case of the three classes Controls (CON), Mild Cognitive Impairment (MCI)
and early dementia (eD) the results were the following:

Method Accuracy Recall Precision F1
K Nearest
Neighbour

72.00% 70.00% 72.10% 71.70%

Logistic
Regression

75.00% 76.00% 74.40% 75.30%

Multi Layer
Perceptron

76.00% 75.00% 76.70% 75.90%Manual
Extraction

Support Vector
Machine

61.30% n.a n.a n.a

Support Vector
Machine

58.7% n.a n.a n.a

Autoencoder 65.23% 56.88% 58.59% 57.49%Automatic
Extraction Autoencoder +

Augmented dataset
86.98% 83.28% 86.19% 84.63%

Table 4.3: Comparison of the state of the art and our experiment on three classes (CON,MCI,eD)

Our result with the auto-encoders is worse than almost all the results of the state of the art
[4] [1] (green color) but with the addition of the specAugment the accuracy improves decisively
with 86% and gets to overcome the state of the art.
The same result was carried out as already explained above also on the two classes Control
(CON) and Decline (DEC), we now see in the table below the comparison with the results of
the state of the art:

76 Proposed approach to speech analysis for Autoencoder

Method Accuracy Recall Precision F1
Logistic
Regression

81.92% n.a n.a n.a
Manual

Extraction
Support Vector
Machine

76.00% 80.00% 83.30% 81.6%

Support Vector
Machine

73.30% 72.00% 85.70% 78.30%

Deep Sequential
Neural Network

83.00% n.a n.a n.a

Autoencoder 77.26% 77.35% 77.16% 76.44%
Automatic
Extraction

Autoencoder +
Augmented dataset

90.57% 90.56% 90.84% 90.30%

Table 4.4: Comparison of the state of the art and our experiment on two classes (CON, DEC)

As expected the result on two classes is clearly better. Initially the result is quite good but
with the help of the specAugment it is clearly improved compared to the state of the art [1] [2]
[3].

Conclusions

This thesis has had as its main purpose to find a different solution to try to detect the disease of
cognitive decline early through the use of audio files. In particular we started from the work
carried out by Calzà et al. [4] where it was carried out manually in more detail some precise
and manually transcribed features were extracted from the audio files. Finally the extracted
features were analyzed using specific software. From our point of view this method has some
points to the detriment that made us think of trying another method. One of the most important
problems we found was that it was not a standard method and above all not scalable, besides
the fact that the use of the transcribed text can lead to a loss of information of the original data.
Our proposal was to use instead the transcribed texts the spectrograms of the audio files and
extract the features automatically using a particular neural network called Autoencoder. So in
our approach we extract the spectrograms from all the audio files and train an autoencoder to
represent the data in the analysis.
The analysis was performed using the auDeep software that trains an autoencoder for extracting
features from spectrograms and their classification. In addition to this we have tried to expand
our starting dataset using a data augmentation technique that modifies the spectrograms of
the audio files called specAugment. So our work later was to test this method and the result
was pretty good. In particular, both the starting dataset and the one increased through the
specAugment were tested and it was found that with a larger dataset the results increase a lot.
Therefore we can assume that with a greater dataset the autoencoder technique would have a
great potential for improvement. As future developments we could try to use another type of
autoencoder with respect to the one that was used for this thesis that maybe could work even
better and certainly a greater dataset.

Bibliography

[1] Gábor Gosztolya, Veronika Vincze, László Tóth, Magdolna Pákáski, János Kálmán, and
Ildikó Hoffmann. Identifying mild cognitive impairment and mild alzheimer’s disease
based on spontaneous speech using asr and linguistic features. Computer Speech &
Language, 53:181–197, 2019.

[2] Charalambos Themistocleous, Marie Eckerström, and Dimitrios Kokkinakis. Identifica-
tion of mild cognitive impairment from speech in swedish using deep sequential neural
networks. Frontiers in neurology, 9, 2018.

[3] Kathleen C Fraser, Jed A Meltzer, and Frank Rudzicz. Linguistic features identify
alzheimer’s disease in narrative speech. Journal of Alzheimer’s Disease, 49(2):407–422,
2016.

[4] Daniela Beltrami, Laura Calzà, Gloria Gagliardi, Enrico Ghidoni, Norina Marcello,
Rema Rossini Favretti, and Fabio Tamburini. Automatic identification of mild cognitive
impairment through the analysis of italian spontaneous speech productions. In Proceedings
of the Tenth International Conference on Language Resources and Evaluation (LREC’16),
pages 2086–2093, 2016.

[5] Daniela Beltrami, Gloria Gagliardi, Rema Rossini Favretti, Enrico Ghidoni, Fabio Tam-
burini, and Laura Calzà. Speech analysis by natural language processing techniques: a
possible tool for very early detection of cognitive decline? Frontiers in Aging Neuro-
science, 10:369, 2018.

[6] alzheimer’s association. Mild Cognitive Impairment (MCI). https://www.alz.org/
alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment,
2019. Online; 2019.

[7] Francois Chollet. Building Autoencoders in Keras. https://blog.keras.io/
building-autoencoders-in-keras.html, 2016. Online; 14 May 2016.

[8] Nathan Hubens. Deep inside: Autoencoders. https://towardsdatascience.com/
deep-inside-autoencoders-7e41f319999f, 2018. Online; 25 February 2018.

[9] Jannik Zürn. But what is an Autoencoder? https://medium.com/@jannik.zuern/
but-what-is-an-autoencoder-26ec3386a2af, 2019. Online; 24 February 2019.

[10] Khandelwal R. Deep Learning - Different Types of Autoencoders. https://medium.com/
datadriveninvestor/deep-learning-different-types-of-autoencoders-41d4fa5f7570, 2018.
Online; 2 December 2018.

https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment
https://www.alz.org/alzheimers-dementia/what-is-dementia/related_conditions/mild-cognitive-impairment
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f
https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f
https://medium.com/@jannik.zuern/but-what-is-an-autoencoder-26ec3386a2af
https://medium.com/@jannik.zuern/but-what-is-an-autoencoder-26ec3386a2af
https://medium.com/datadriveninvestor/deep-learning-different-types-of-autoencoders-41d4fa5f7570
https://medium.com/datadriveninvestor/deep-learning-different-types-of-autoencoders-41d4fa5f7570

80 Bibliography

[11] Jonnalagadda V. Sparse, stacked and variational autoencoder.
https://medium.com/@venkatakrishna.jonnalagadda/sparse-stacked-and-variational-
autoencoder-efe5bfe73b64, 2018. Online; 6 December 2018.

[12] Joseph Rocca. Understanding Variational Autoencoders (VAEs). https:
//towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73,
2019. Online; 24 September 2019.

[13] Cheng Lei, Benlin Hu, Dong Wang, Shu Zhang, and Zhenyu Chen. A preliminary study
on data augmentation of deep learning for image classification. In Proceedings of the 11th
Asia-Pacific Symposium on Internetware, page 20. ACM, 2019.

[14] Jason Brownlee. How to Configure Image Data Augmentation in Keras
(Deep Learning for Computer Vision). https://machinelearningmastery.com/
how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/,
2019. Online; 12 April 2019.

[15] Arun Gandhi. Data augmentation | how to use deep learning when you have limited data
— part 2. https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-
you-have-limited-data-part-2/, 2018. Online; November 2018.

[16] Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation
models with monolingual data. arXiv preprint arXiv:1511.06709, 2015.

[17] Zhenhao Li and Lucia Specia. Improving neural machine translation robustness via data
augmentation: Beyond back translation. arXiv preprint arXiv:1910.03009, 2019.

[18] Jason W Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting perfor-
mance on text classification tasks. arXiv preprint arXiv:1901.11196, 2019.

[19] Daniel S. Park, AI Resident and William Chan, Research Scientist. SpecAugment: A New
Data Augmentation Method for Automatic Speech Recognition . https://ai.googleblog.
com/2019/04/specaugment-new-data-augmentation.html, 2019. Online; 22 April 2019.

[20] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk,
and Quoc V Le. Specaugment: A simple data augmentation method for automatic speech
recognition. arXiv preprint arXiv:1904.08779, 2019.

[21] Zach C. State of the art audio data augmentation with google brain’s specaugment and
pytorch. https://towardsdatascience.com/state-of-the-art-audio-data-augmentation-with
-google-brains-specaugment-and-pytorch-d3d1a3ce291e, 2019. Online; 1 May 2019.

[22] Rakshith Ponnappa. Google Colab: Using GPU for Deep Learning. https://python.
gotrained.com/google-colab-gpu-deep-learning/, 2019. Online; 27 January 2019.

[23] Anne Bonner. Getting Started With Google Colab. https://towardsdatascience.com/
getting-started-with-google-colab-f2fff97f594c, 2019. Online; 1 January 2019.

[24] Michael Freitag, Shahin Amiriparian, Sergey Pugachevskiy, Nicholas Cummins, and
Björn Schuller. audeep: Unsupervised learning of representations from audio with deep
recurrent neural networks. The Journal of Machine Learning Research, 18(1):6340–6344,
2017.

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
https://python.gotrained.com/google-colab-gpu-deep-learning/
https://python.gotrained.com/google-colab-gpu-deep-learning/
https://towardsdatascience.com/getting-started-with-google-colab-f2fff97f594c
https://towardsdatascience.com/getting-started-with-google-colab-f2fff97f594c

Bibliography 81

[25] Jason Brownlee. How to configure an encoder-decoder model for neural machine trans-
lation. https://machinelearningmastery.com/configure-encoder-decoder-model-neural-
machine-translation/, 2019. Online; 7 August 2019.

Ringraziamenti

Prima di tutto vorrei ringraziare i miei genitori che mi hanno permesso di intraprendere questo
percorso che ora si sta concludendo. Un ringraziamento speciale va sicuramente a mia mamma
Rita che soprattutto in questi ultimi mesi mi è stata vicino e mi ha aiutato a concludere questo
persorso di studi nonostante la perdita di mio padre avvenuta poco tempo fa. Ovviamente
un rigraziamento speciale va anche a mio padre che nonostante il suo ultimo periodo di vita
difficile non ha mai smesso di supportarmi in tutto. Poi vorrei ringraziare anche tutti i miei
familiari partendo dagli zii e finendo per tutti i miei cugini che mi sono stati sempre vicini.
Non posso non ringraziare la mia squadra di calcio a 5 il "Drinking Team" con la quale abbiamo
passato e spero di passare ancora tante altre esperienze insieme. In particolare la vecchia guardia
con la quale abbiamo creato la squadra ma sopratutto abbiamo creato una famiglia dove neanche
la distanza ci fa sentire lontani.
Ringrazio anche i miei coinquili ed ex-coinquilini di San Felice che mi hanno permesso di
percorrere serenamente il mio percorso sia fuori che dentro l’università.
Ringrazio i ragazzi di Sant’Ilario e Parma che mi hanno sempre fatto sentire a casa e che
mi sono stati vicini nei momenti più difficili. Ah già dimenticavo saluto anche il gruppo del
momento i "Century Light" composto da Fabio e Mattia due grandi persone ma sopratutto due
grandi artisti che meritano le migliori fortune.
Ringrazio infine il gruppo "Giorgio" il gruppo di persone che conosco da 27 anni, dove nemmeno
le distanze ci allontanano ma anzi ci rafforzano e ci fanno rimanere uniti.
Un grande ringraziamento va assolutamente al prof. Montesi e Dott. Flavio Bertini per avermi
seguito nel periodo di tesi e non solo. Voglio ringraziare tutte le persone che mi sono dimenticato
di citare ma che sono stati importanti come gli altri.
Concludo con una frase detta da un mio amico caro una sera: "Dopo tre anni finalmente
riusciamo ad andare alla laurea di Davide Allevi con Davide Allevi..." cit M.I.

	Table of contents
	List of figures
	Introduction
	1 State of the art
	1.1 Manual feature extraction
	1.2 Automatic feature extraction

	2 Autoencoder review
	2.1 Definition Autoencoder
	2.1.1 Mean Squared Error (MSE)
	2.1.2 Kullback-Leibler (KL) divergence

	2.2 The use of autoencoders
	2.3 Types of Autoencoder
	2.3.1 Denoising Autoencoder
	2.3.2 Sparse Autoencoder
	2.3.3 Contractive Autoencoder
	2.3.4 Undercomplete Autoencoder
	2.3.5 Convolutional Autoencoder
	2.3.6 Variational Autoencoder
	2.3.7 Deep Autoencoder

	2.4 Example

	3 Data Augmentation
	3.1 Image data augmentation
	3.2 Text Augmentation
	3.2.1 Back translation
	3.2.2 Easy Data Augmentation (EDA)

	3.3 SpecAugment

	4 Proposed approach to speech analysis for Autoencoder
	4.1 Dataset
	4.2 Software platform: Google Colab
	4.2.1 Create a folder for notebooks
	4.2.2 Set up free GPU
	4.2.3 Mounting Google Drive to Colab Notebook

	4.3 Experiment
	4.3.1 Experimental settings
	4.3.2 Experiment on three classes (CON, MCI, eD)
	4.3.3 Experiment on two classes (CON, DEC)

	4.4 Results

	Conclusions
	Bibliography

