Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 (CC BY-NC-SA 3.0) Download (9MB) |
Abstract
In this work a steady-state model of a simple vapor compression refrigeration cycle is presented. All the fundamental components of this system are modeled separately in order to consider them as black boxes that take inputs and convert them into output variables. The heat exchangers are treated as a set of multiple zones, identified by the refrigerant's state, connected in series, in which the heat transfer coefficient (HTC) is constant. A non-linear system of equations is obtained applying the energy balances and the ε-NTU method for each zone in the heat exchangers. A study on the HTC correlations used to connect the length of the zones with the value of the respective HTC is developed. The compressor is modeled using a polynomial function. Some iterative methods for the resolution in Matlab of the models of the components and the machine are presented, focusing on the strategy to decrease the execution time and to increase the accuracy of the results. Finally, all the models are validated through a set of experimental data and the global model is used to make some considerations about the efficiency and the exergy destruction in the plant.