Del Gatto, Davide
(2019)
Analisi di Fourier sui Gruppi.
[Laurea], Università di Bologna, Corso di Studio in Matematica [L-DM270]
Documenti full-text disponibili:
![]() |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (508kB) |
Abstract
La tesi riguarda la generalizzazione della trasformata di Fourier per funzioni di L^1(G), dove G è un gruppo topologico localmente compatto e di Hausdroff. L'obbiettivo è di mostrare che i risultati noti per la trasformata di Fourier (come il Teorema di Inversione, il Teorema di Plancherel, ecc...) sono validi anche in questo caso e di presentare alcuni risultati classici di analisi armonica astratta nel caso di gruppi abeliani come il Teorema di Dualità di Pontryagin.
Abstract