Pezzoli, Gian Marco
(2019)
Representations of symmetric groups on the homology of dual matroids of complete graphs.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (3MB)
|
Abstract
This thesis investigates the representations of the symmetric group on the homology of the dual matroid of a complete graph. These representations arise as follows: with each graph we can associate a matroid, by taking the set of edges of the graph as ground set and the edge sets of simple cycles as the circuits of the matroid. We focus on the dual of the matroid of the complete graph. We calculate the homology of the simplicial complex L associated with this matroid. Permuting the vertices of the complete graph induces a permutation on the edge set which is a vertex map of the simplicial complex. This vertex map sends independents to independents, thus inducing a simplicial map from the polytope of L to itself, hence on the homology spaces of L. This defines a representation of the symmetric group on the homology Hi(L,C). We show that the above representation is induced from a primitive representation of the cyclic subgroup of order n.
Abstract
This thesis investigates the representations of the symmetric group on the homology of the dual matroid of a complete graph. These representations arise as follows: with each graph we can associate a matroid, by taking the set of edges of the graph as ground set and the edge sets of simple cycles as the circuits of the matroid. We focus on the dual of the matroid of the complete graph. We calculate the homology of the simplicial complex L associated with this matroid. Permuting the vertices of the complete graph induces a permutation on the edge set which is a vertex map of the simplicial complex. This vertex map sends independents to independents, thus inducing a simplicial map from the polytope of L to itself, hence on the homology spaces of L. This defines a representation of the symmetric group on the homology Hi(L,C). We show that the above representation is induced from a primitive representation of the cyclic subgroup of order n.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Pezzoli, Gian Marco
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Didattico
Ordinamento Cds
DM270
Parole chiave
representations homology matroid root system induced symmetric group poset lattice of flats partition lattice Alexander duality geometric Weyl group
Data di discussione della Tesi
29 Marzo 2019
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Pezzoli, Gian Marco
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Didattico
Ordinamento Cds
DM270
Parole chiave
representations homology matroid root system induced symmetric group poset lattice of flats partition lattice Alexander duality geometric Weyl group
Data di discussione della Tesi
29 Marzo 2019
URI
Statistica sui download
Gestione del documento: