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Introduction

This thesis investigates the representations of the symmetric group on the

homology of the dual matroid of a complete graph. These representations

arise as follows: with each graph we can associate a matroid, by taking the set

of edges of the graph as ground set and the edge sets of simple cycles as the

circuits of the matroid. We focus on the dual of the matroid of the complete

graph Kn, which coincides with the dual matroid of the independent sets of

the root system of type An�1. We calculate the homology of the simplicial

complex L associated with this matroid.

Permuting the vertices of the complete graph induces a permutation on

the edge set which is a vertex map of the simplicial complex. This vertex map

sends independents to independents, thus inducing a simplicial map from the

polytope of L to itself, hence on the homology spaces of L. This defines a

representation of the symmetric group Sn on the homology Hi(L,C), which
turns out in this case to be non trivial if i = (n2 � 3n)/2. We show that the

above representation is induced from a primitive representation of Cn, the

cyclic subgroup of order n.

This problem has been suggested by the study of the Cattani-Kaplan-

Schmid complex relative to a family of completely reducible spectral curves

for the Hitchin fibration of type An, performed by de Cataldo, Heinloth and

Migliorini ([7]). The dual graph of a spectral such curve is the complete

graph, and the action of the symmetric group on the irreducible components

of the curve yields an action on the vertices of the complete graph .

In chapter one we give some background regarding root systems and group

i



ii INTRODUCTION

representations. In the first section we focus on the root system of type A,

whose Weyl group is the symmetric group. The action of the Weyl group

Sn on the root system An�1, without considering the sign, will correspond

to the action of the symmetric group on the edges of the complete graph. In

particular, in the second section, we define the induced representation and

we compute an example that will be important for our purposes.

In chapter two we recall the necessary preliminaries regarding simplicial

complexes, homology, and matroid theory. In the first section we prove

Alexander duality, that will be crucial for the main result of this thesis.

In the second section we see how the action on the ground set induces a

simplicial map and furthermore a map on the homology. At the end of the

chapter we describe the case of K4 (or equivalently �+(A3)).

In chapter three, following Stanley [20], we compute the representations

on the homology of the partition lattice ⇧n with the action induced from the

permutations of 1, 2, . . . , n. We see that these representations are exactly the

induced representations from Cn to Sn. At the end of the chapter we report

the explicit calculation of the representations of ⇧4. The reader can compare

this example with the one at the end of chapter 2.

The results obtained in these two examples are generalized in chapter

four. In the first section, given any simple matroid M , we apply Alexander

duality to the following two abstract simplicial complexes: the independence

set of the dual matroid M⇤ and the nonspanning simplicial complex of M ,

i.e. the set of all subsets of the groundset which do not contain any basis

of M . In the second section we use a result due to Folkman to show the

isomorphism between the homology of the non spanning simplicial complex

and the homology of its lattice of flats. Combining the last two results

we prove that the homology of the dual matroid M⇤ is isomorphic to the

homology of the lattice of flats of M . On the other hand, the lattice of flats

of the cycle matroid of Kn is exactly the partition lattice ⇧n. Since these

isomorphisms are natural, i.e. they do not depend on the choice of a basis,

they are compatible with the action of Sn. Consequently the representations
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we have studied in chapter three coincide with the representations we want

to study in this thesis.

It would be interesting to extend what has been done in this thesis to

any type of root system. In chapter five we compute the representations of

the Weyl group on the homology of the dual matroid associated to the root

system of type B2.
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Chapter 1

Preliminaries in Algebra

1.1 Root systems

In this Section we recall the fundamental notions of root system and we

explicitly construct the root systems of type A that will be fundamental for

this thesis.

1.1.1 Basic definitions

Let E be a finite-dimensional real vector space endowed with a positive

definite symmetric bilinear form (·, ·).
Given a non-zero vector ↵ 2 E, let

P↵ = {v 2 E | (v,↵) = 0}

be the hyperplane orthogonal to ↵, and let

�↵ : E �! E

be an invertible linear transformation such that

�↵(v) = v 8v 2 P↵, �↵(↵) = �↵.

1



2 1. Preliminaries in Algebra

It is su�cient to define �↵ on P↵ and ↵, since E = < ↵ > � P↵.

It is easy to write down an explicit formula:

�↵(�) = � � 2(�,↵)

(↵,↵)
↵

We define h�,↵i = 2(�,↵)
(↵,↵) ; notice that h�,↵i is linear only in the first variable.

Definition 1.1. A subset � of E is called a root system in E if the following

axioms are satisfied:

(R1) � is finite, 0 /2 �, � spans E

(R2) If ↵ 2 �, then c↵ 2 �, c = ±1

(R3) 8 ↵, � 2 � �↵(�) = � � h�,↵i↵ 2 �

(R4) 8 ↵, � 2 � h�,↵i 2 Z

The elements of � are called roots. The dimension of E, dimRE = l, is called

the rank of the root system.

The following statements give the first indication that the axioms for root

systems are quite restrictive.

Let ↵, � 2 � with � 6= ±↵. Then:

a) (↵, �) = k↵kk�k cosc↵� =) h↵, �i = 2(↵,�)
(�,�) = 2k↵k

k�k cosc↵�

b) h↵, �i = 0 () (↵, �) = 0

c) h↵, �i and h�,↵i are always concordant.

d) k↵k  k�k =) | h↵, �i |  | h�,↵i |

e) h↵, �i h�,↵i = 4 cos2 c↵�  3 =) h↵, �i h�,↵i 2 {0, 1, 2, 3}

Definition 1.2. A subset � of � is called a base if:

(B1) � is a base of E.
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(B2) Each root � 2 � can be written as � =
P

�2� n�� with integral coe�-

cients n� all nonnegative or all nonpositive.

The roots in � are called simple. If all n� � 0, we call � positive and

write � � 0; if all n�  0, we call � negative and write � � 0.

The collections of positive and negative roots (relative to �) will usually just

be denoted by �+ and ��.

Definition 1.3. The root system � is called irreducible if it cannot be par-

titioned into the union of two proper subsets such that each root in one set

is orthogonal to each root in the other.

Definition 1.4. Let � be a root system in E. Denote by W the subgroup

of GL(E) generated by the reflections �↵ with ↵ 2 �. W is called the Weyl

group of �.

By (R3) W permutes the elements of �, so we can identify W with a

subgroup of the symmetric group on �, in particular W is finite.

1.1.2 Root systems of type A

Let E be the n-dimensional subspace of Rn+1 orthogonal to the vector

e1 + · · ·+ en+1:

E =
�

x 2 Rn+1 | (x, e1 + · · ·+ en+1) = 0
 

Let also

I =
n

n+1
X

i=1

aiei | ai 2 Z
o

and I 0 = I \ E

Let � be the set of all vectors ↵ 2 I 0 such that (↵,↵) = 2:

� =
�

↵ 2 I 0 | (↵,↵) = 2
 

=
�

↵ 2 I 0 | k↵k2 = 2
 

Let ↵ 2 � ✓ E, we have for suitable ai 2 Z:

0
|{z}

=
⇣

↵,
n+1
X

j=1

ej
⌘

=
⇣

n+1
X

i=1

aiei,
n+1
X

j=1

ej
⌘

= a1 + . . . an+1
| {z }
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Moreover k↵k2 = 2,

2
|{z}

=
�

↵,↵
�

=
⇣

n+1
X

i=1

aiei,
n+1
X

i=1

aiei
⌘

= a21 + . . . a2n+1
| {z }

For a fixed ↵ 2 �, there must be two di↵erent ai, aj such that:

ai = 1 aj = �1 ak = 0, 8k 6= i, j

or

ai = �1 aj = 1 ak = 0, 8k 6= i, j

Every element of � is of the form ei � ej with i 6= j:

� =
�

ei � ej | i 6= j
 

� is obviously finite and 0 /2 � by definition. It is evident that � spans

E. Therefore (R1) is satisfied.

The choice of lengths we made make obvious that (R2) holds.

For (R3) it is enough to check that the reflection �↵ with ↵ 2 � sends � to I 0,

i.e �↵(�) ✓ I 0, since then �↵(�) automatically consists of vectors of squared

lengths equal to two (�↵ is an isometry, doesn’t change lengths). But then

(R3) follows directly from (R4):

�↵(�) = � � h�,↵i↵ � 2 I 0,↵ 2 I 0

If (R4) holds, we have that h�,↵i 2 Z and then �↵(�) 2 �.

Regarding (R4), let ↵, � 2 � ✓ I 0 we have for suitable ai, bi 2 Z:

(↵, �) =
⇣

n
X

i=1

aiei,
n
X

j=1

bjej
⌘

= a1b1 + · · ·+ anbn 2 Z

It follows that

h↵, �i = 2(↵, �)

(↵,↵)
=

2(↵, �)

k↵k2 = (↵, �)

Then h↵, �i 2 Z. Therefore � is a root system and is called the root

system of type An.
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The vectors ↵i = ei � ei+1 (1 6 i 6 n) are linearly independent and for

i < j:

ei � ej = (ei � ei+1) + (ei+1 � ei+2) + · · ·+ (ej�1 + ej)

The coe�cients of the ↵i are all positive, so the ↵i form a base of �.

� =
�

↵i | 1 6 i 6 n
 

Finally, notice that the reflection �↵i with respect to the root ↵i, permutes

the subscripts i, i+ 1 and leaves all the others subscripts fixed.

�↵i(↵i) = �↵i �↵i(↵i+1) = ↵i+1 � h↵i+1,↵ii↵i = ↵i+1 + ↵i

�↵i(↵j) = ↵j � h↵j,↵ii↵i = ↵j 8j 6= i� 1, i, i+ 1

Thus �↵i corresponds to the transposition (i, i + 1) in the symmetric group

Sn+1. These transpositions generate Sn+1, so we obtain a natural isomor-

phism between W and Sn+1:

W �! Sn+1

�↵i 7�! (i, i+ 1)

If we think of An as embedded in Rn+1, the action of the Weyl group cor-

responds to a permutation of the coordinates of Rn+1. Each element � of

W = Sn+1 induces a map on �+
An

in the following way: for each element

xi 2 �+
An

consider the subspace Vi = Span{xi} of Rn+1.

Since W permutes the roots of �An , it also permutes the Vi’s. By iden-

tifying the Vi with the xi we get a map on �+
An
; in other words we consider

the action of the Weyl group on �An without considering the sign.

Example 1. Let us consider the root system of type A3:

�A3 = {±↵1,±↵2,±↵3,±(↵1 + ↵2),±(↵2 + ↵3),±(↵1 + ↵2 + ↵3)}

WA3 �! S4

�↵1 7�! (1, 2)

�↵2 7�! (2, 3)

�↵3 7�! (3, 4)
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If we consider � 2W , we call e� the induced map on �+
An
:

�↵1 : �A3 �! �A3

↵1 7�! �↵1

↵2 7�! ↵1 + ↵2

↵3 7�! ↵3

e�↵1 : �+
A3
�! �+

A3

↵1 7�! ↵1

↵2 7�! ↵1 + ↵2

↵3 7�! ↵3

For example, if f = �↵1 � �↵3 then:

f : �A3 �! �A3

↵1 7�! �↵1

↵2 7�! ↵1 + ↵2 + ↵3

↵3 7�! �↵3

ef : �+
A3
�! �+

A3

↵1 7�! ↵1

↵2 7�! ↵1 + ↵2 + ↵3

↵3 7�! ↵3
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1.2 Group representations

In this Section we recall the fundamental notions of the representations

theory of finite groups. As an example, we focus on representations of the

symmetric group, which is the most relevant for our purposes.

1.2.1 Basic definitions

Let V be a C-vector space and let GL(V ) be the group of isomorphisms

of V onto itself. An element a 2 GL(V ) is an invertible linear transformation

of V . We will denote its inverse by a�1.

When V has a finite basis {e1, . . . , en}, each linear map:

a : V �! V

can be defined by a square matrix (aij) of order n. The coe�cients aij are

complex numbers; they are obtained by expressing the images a(ej) as linear

combinations of the elements of the basis {e1, . . . , en}:

a(ej) =
n
X

i=1

aijei

a is an isomorphism if and only if det(a) = det(aij) 6= 0.

In this way the group GL(V ) can be identified with the group of invertible

square matrices of order n.

Suppose now G is a finite group, with identity element 1 and with composi-

tion:
G⇥G �! G

(s, t) 7�! st

Definition 1.5. A linear representation of G in V is a group homomorphism

⇢ from the group G into the group GL(V ):

⇢ : G �! GL(V )

s 7�! ⇢s

If V has finite dimension n, we say also that n is the degree of the represen-

tation.
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In other words, we associate each element s 2 G with an element ⇢s of

GL(V ) in such way that we have the following equality:

⇢st = ⇢(st) = ⇢(s)⇢(t) = ⇢s⇢t

Definition 1.6. Let ⇢ and ⇢0 be two representations of the same group G in

two vector spaces V and V 0. These representations are said to be isomorphic

if there exists a linear isomorphism

⌧ : V �! V 0

such that

⌧ � ⇢(s) = ⇢0(s) � ⌧ for all s 2 G

This is equivalent to say that the following diagram

V
⌧���! V 0

⇢s

?

?

y

?

?

y

⇢0s

V
⌧���! V 0

commutes for all s 2 G.

When ⇢ and ⇢0 are given in matrix form by Rs and R0
s respectively, this

means that there exists an invertible matrix T such that:

T Rs = R0
s T for all s 2 G

Example 2. a) Let V be a vector space of dimension 1, then

GL(V ) ' C⇤

where C⇤ denotes the multiplicative group of nonzero complex numbers.

A representation of degree 1 of a group G is a homomorphism

⇢ : G �! C⇤

Since each element of G has finite order, the values ⇢(s) of ⇢ are roots

of unity; in particular

|⇢(s)| = |⇢s| = 1

If we take ⇢(s) = 1 for all s 2 G, we obtain a representation of G which

is called the unit (or trivial) representation.
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b) Let g be the order of G, and let V be a vector space of dimension g,

with a basis (et)t2G indexed by the elements t of G. For s 2 G, let ⇢s

be the linear map of V into V such that:

⇢s : V �! V

et 7�! est

This defines a linear representation of G, which is called the regular

representation of G. Its degree is equal to the order of G. Note that:

es = ⇢s(e1)

hence ⇢s(e1), s 2 G form a basis of V .

Conversely, let W be a representation of G containing a vector w such

that the elements ⇢s(w) with s 2 G, form a basis of W ; then W is

isomorphic to the regular representation under the following map:

� : Vreg �! W

es 7�! ⇢s(w)

We recall the definition of K-algebra:

Definition 1.7. LetK be a field. AK-algebra is aK-vector space A equipped

with an additional bilinear binary operation:

⇤ : A⇥ A �! A

(x, y) 7�! x ⇤ y

A K-algebra is said to be associative if the product ⇤ is associative. An

algebra is said to be unitary if it has an identity element with respect to the

multiplication ⇤.

Definition 1.8. Let (A, ⇤) and (A0, ?) be two K-algebras. A K-algebra ho-

momorphism is a linear map

� : A �! A0

such that

�(a ⇤ b) = �(a) ? �(b) 8a, b 2 A
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Definition 1.9. Let A be an associative and unitary K-algebra and let V be

a vector space. A representation of A on V is a K-algebra homomorphism

e⇢ : A �! End(V )

where End(V ) is the associative algebra of endomorphism of V .

Definition 1.10. Let ⇤ be a ring with unity 1⇤, an abelian group M is said

to be a left ⇤-module if there exists a map:

f : ⇤⇥M �! M

such that:

• f(1⇤,m) = m 8m 2M

• f(�1�2,m) = f(�1, f(�2,m)) 8m 2M 8�1,�2 2 ⇤

• f(�1 + �2,m) = f(�1,m) + f(�2,m) 8m 2M 8�1,�2 2 ⇤

• f(�,m1 +m2) = f(�,m1) + f(�,m2) 8m1,m2 2M 8� 2 ⇤

We will often write � .m instead of f(�,m).

Let � be a representation of an associative and unitary algebra A

� : A �! End(V )

a 7�! �a

the vector space V can be seen as a left A-module through the action

a . v = �(a)(v) = �a(v)

Definition 1.11. The group algebra K[G], where K is a field and G a group

with operation ⇤, is the set of all linear combinations of finitely many elements

of G with coe�cients in K, hence all elements of the form:

a1 g1 + a2 g2 + · · ·+ an gn ai 2 K, gi 2 G 8i = 1, . . . , n

This element can be denoted in general by
X

g2G

ag g

where it assumed that ag = 0 for all but finitely many element of G.
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The group algebra K[G] is a K-algebra with respect to the addition de-

fined by the following rule:

X

g2G

ag g +
X

g2G

bg g =
X

g2G

(ag + bg) g;

the product by scalar is given by

�
X

g2G

ag g =
X

g2G

(�ag) g

and the multiplication is the following

 

X

g2G

ag g

!  

X

h2G

bh h

!

=
X

g,h2G

(agbh) g ⇤ h.

From this definition, it follows that the identity element of G is the unity of

K[G].

Remark. Every linear representation of a group G on V

⇢ : G �! GL(V )

g 7�! ⇢g

defines an algebra representation of K[G] on V in the following way:

e⇢ : K[G] �! End(V )
P

g2G �g g 7�!
P

g2G �g ⇢g

Conversely, every algebra representation of K[G] on V defines a representa-

tion of G on V by considering the restriction of e⇢ to the elements of G.

1.2.2 Irreducible representations

Let ⇢ : G �! GL(V ) be a linear representation and let W be a

vector subspace of V . Suppose that W is stable under the action of G, in

other words suppose that for all x 2 W , ⇢s(x) 2 W for all s 2 G.

The restriction ⇢|Ws of ⇢s is then an isomorphism of W onto itself, and we

have:

⇢|Wst = ⇢|Ws ⇢|Wt
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Thus
⇢W : G �! GL(W )

s 7�! ⇢|Ws

is a linear representation of G in W ; ⇢W is said to be a subrepresentation of

V .

Theorem 1.12. Let ⇢ : G �! GL(V ) be a linear representation of G

in V and let W be a vector subspace of V stable under G. Then there exists

a complement W 0 of W which is stable under G. In other words, there exists

a subspace W 0 such that:

i) V = W �W 0

ii) W 0 is stable under the action of G

Proof . See [19], Theorem 1; pag 6.

Definition 1.13. Let ⇢ : G �! GL(V ) be a linear representation of G

in V . We say that it is irreducible if V is not 0 and if no vector subspace of

V is stable under G, except 0 and V .

By induction, Theorem 1.12 yields immediately the following:

Theorem 1.14. Every representation is a direct sum of irreducible repre-

sentations.

Let V1 and V2 be two vector spaces. Let

⇢1 : G �! GL(V1)

s 7�! ⇢1s

⇢2 : G �! GL(V2)

s 7�! ⇢2s

be two linear representations of a group G. For s 2 G, define an element

⇢s 2 GL(V1 ⌦ V2) by the condition:

⇢s(x1 ⌦ x2) = ⇢1s(x1)⌦ ⇢2s(x2)

The existence and uniqueness of ⇢s follows from the definition of tensor prod-

uct. We write:

⇢s = ⇢1s ⌦ ⇢2s
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We have thus defined a linear representation of G in V1 ⌦ V2:

⇢ : G �! GL(V1 ⌦ V2)

s 7�! ⇢s = ⇢1s ⌦ ⇢2s

which is called the tensor product of ⇢1 and ⇢2.

The tensor product of two irreducible representations is not in general irre-

ducible.

1.2.3 The character of a representation

Let V be a vector space having a basis {e1, . . . , en}, and let a be a linear

map of V into itself, with associated matrix (aij). We recall that the trace

of a is the scalar

Tr(a) =
n
X

i=1

aii

It is the sum of the eigenvalues of a counted with their multiplicities, thus it

does not depend on the choice of the basis.

Definition 1.15. Let ⇢ : G �! GL(V ) be a linear representation of a

finite group G in the vector space V . For each s 2 G, we set:

�⇢(s) = Tr(⇢s)

The complex valued function

�⇢ : G �! C
s 7�! Tr(⇢s)

is called the character of the representation ⇢.

The following properties are straightforward:

Proposition 1.16. If � is the character of a representation ⇢ of degree n,

we have:

i) �(1) = n
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ii) �(s�1) = �(s) for s 2 G

iii) �(tst�1) = �(s) for s, t 2 G

Remark. A function

f : G �! C

satisfying identity iii) is called a class function.

Proposition 1.17. Let

⇢1 : G �! GL(V1) ⇢2 : G �! GL(V2)

be two linear representations of a group G, and let �1 and �2 be their char-

acters. Then:

i) The character �⇢ of the direct sum representation

⇢ : G �! GL(V1 � V2)

is equal to �1 + �2.

ii) The character  ⇢ of the tensor product representation

⇢ : G �! GL(V1 ⌦ V2)

is equal to �1 · �2.

Proof . See [19], Proposition 2; pag 11.

Proposition 1.18 (Schur’s Lemma). Let

⇢1 : G �! GL(V1) ⇢2 : G �! GL(V2)

be two irreducible representations of G, and let f be a linear mapping of V1

into V2 such that

⇢2s � f = f � ⇢1s for all s 2 G

Then:
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(1) If ⇢1 and ⇢2 are not isomorphic, we have f = 0.

(2) If V1 = V2 and ⇢1 = ⇢2, f is a homothety i.e., a scalar multiple of the

identity.

Proof . See [19], Proposition 4; pag 13.

Let

� : G �! C  : G �! C

two functions on G, set

h�, i = 1

g

X

t2G

�(t�1) (t) =
1

g

X

t2G

�(t) (t�1)

where g = |G|. We have that:

• h�, i = h ,�i

• h�, i is linear in � and in  .

Let

� : G �! C  : G �! C

two complex-valued functions on G, and set

(�, ) =
1

g

X

t2G

�(t) (t)

where g = |G|. Then:

• (�, ) is linear in �, semilinear in  

• (�,�) > 0 for all � 6= 0

Thus, (�, ) is a hermitian product.

If e is the function defined by the formula e (t) =  (t�1), we have:

(�, ) =
1

g

X

t2G

�(t) (t) =
1

g

X

t2G

�(t) e (t�1) = h�, e i
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In particular if � is the character of a representation of G, we have, by

Proposition 1.16, that e� = � hence

(�,�) = h�,�i for all functions � on G

So we can use at will (�,�) or h�,�i, so long as we are concerned with

characters.

Theorem 1.19. i) If � is the character of an irreducible representation,

we have:

(�,�) = 1

ii) If � and �0 are the characters of two non isomorphic irreducible repre-

sentation, we have:

(�,�0) = 0

Proof . See 19, Theorem 3; pag 15.

This result has important consequences, for example:

Theorem 1.20. Let V be a linear representation of G, with character �, and

suppose that V decomposes into a direct sum of irreducible representation:

V = W1 � · · ·�Wk

Then, if W is an irreducible representation with character �, the number of

Wi isomorphic to W is equal to the scalar product (�,�) = h�,�i.

Corollary 1.21. The number of Wi isomorphic to W does not depend on

the chosen decomposition. (This number is called the number of times that

W occurs in V .)

Proof . Indeed, (�,�) does not depend on the decomposition.

Corollary 1.22. Two representations with the same character are isomor-

phic.
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Proof . Indeed, Corollary 1.21 and Theorem 1.20 show that they contain each

given irreducible representation the same number of times.

The above results reduce the study of representations to that of their

characters. If �1, . . . ,�h are the distinct irreducible characters of G, and if

W1, . . . ,Wh denote the corresponding representations, each representation V

of G is isomorphic to a direct sum

V = m1W1 � · · ·�mhWh mi integers > 0.

The character � of V is equal to � = m1�1 + · · ·+mh�h and we have

mi = (�,�i) 8i = 1, . . . , h.

The orthogonality relations among the �i imply in addition:

(�,�) =
h
X

i=1

m2
i .

Theorem 1.23. If � is the character of a representation V , then (�,�) is a

positive integer and we have (�,�) = 1 if and only if V is irreducible.

Proof . Since (�,�) =
Ph

i=1 m
2
i is a positive integer, (�,�) is equal to 1 if and

only if one of the mi’s is equal to 1 and the others to 0, that is, if and only

if V is isomorphic to one of the Wi.

1.2.4 Decomposition of the regular representation

For the rest of Subsection 1.2.4, the irreducible characters of G are de-

noted by �1, . . . ,�h; their degrees are written n1, . . . , nh, we have ni = �i(1).

Let Vreg be the regular representation of G, i.e. Vreg = heg, g 2 Gi,

⇢ : G �! GL(Vreg)

s 7�! ⇢s

⇢s : Vreg �! Vreg

et 7�! es t
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If s = 1G we have:

�reg(1G) = dim(Vreg) = |G| = g.

On the other hand, if s 6= 1G, we have st 6= t for all t, which implies that the

diagonal terms of the matrix associated with ⇢s are zero. In particular we

have Tr(⇢s) = 0:

�reg(s) = 0

We can summarize the above results in the following Proposition:

Proposition 1.24. The character �reg of the regular representation is given

by the formulas:

�reg(1G) = g

�reg(s) = 0 8s 6= 1G

Corollary 1.25. Every irreducible representation Wi of G is contained in

the regular representation with multiplicity equal to its degree ni:

Vreg = n1W1 � · · ·� nhWh

Proof . According to Theorem 1.20, the number of times each representation

Wi of G is contained in the regular representation is equal to (�reg,�i) and

we have:

(�reg,�i) = h�reg,�ii =
1

g

X

t2G

�reg(t
�1)�i(t) =

1

g
g �i(1G) = �i(1G) = ni

Corollary 1.26. a) The degrees ni satisfy the relation

h
X

i=1

n2
i = g

b) If s 2 G and s 6= 1G, we have:

h
X

i=1

ni �i(s) = 0
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Proof . By Corollary 1.25 we have:

�reg(s) =
h
X

i=1

ni �i(s) for all s 2 G

Taking s = 1G we obtain a), and taking s 6= 1G, we obtain b).

Remark. The above result can be used in determining the irreducible repre-

sentations of a group G: suppose we have constructed some mutually non

isomorphic irreducible representations of degrees n1, . . . , nk; in order to check

whether they are all the irreducible representations ofG (up to isomorphism),

it is necessary and su�cient to check whether n2
1 + · · ·+ n2

k = g.

1.2.5 Number of irreducible representations

Recall that a function f on G is called a class function if f(tst�1) = f(s)

for all s, t 2 G.

We introduce now the space H of class functions on G; the irreducible

characters �1, . . . ,�h belong to H.

Theorem 1.27. The characters �1, . . . ,�h form an orthonormal basis of H.

Proof . See [19], Theorem 6; pag 19.

Remark. Recall that two elements t and t0 of G are said to be conjugate if

there exists s 2 G such that t0 = sts�1:

t ⇠ t0 () 9s 2 G | t0 = sts�1.

This is an equivalence relation which partitions G into classes, called conju-

gacy classes. Here are some properties:

- The identity element of G is always the only element of its class:

[1G] = {1G}

- If G is abelian, then gag�1 = a for all a and g in G, hence:

[g] = {g} 8g 2 G
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- If two elements a, b belong to the same conjugacy class, then they have

the same order.

Theorem 1.28. The number of irreducible representations of G (up to iso-

morphism) is equal to the number of conjugacy classes of G.

Proof . Let C1, . . . , Ck be the distinct classes of G. To say that a function f

on G is a class function is equivalent to saying that it is constant on each of

C1, . . . , Ck; it is thus determined by its values �i on the Ci, and these can

be chosen arbitrarily. Consequently, the dimension of the space H of class

function is equal to k. On the other hand, this dimension is, by Theorem 1.27,

equal to the number of irreducible representations of G (up to isomorphism).

The result follows.

Example 3. Take G = S4. We have |S4| = 24, and there are 5 conjugacy

classes:

[id] [(12)] [(123)] [(1234)] [(12)(34)]

Thus, there are up to isomorphism 5 irreducible representations of S4:

Vreg = n1V1 � n2V2 � n3V3 � n4V4 � n5V5 (1.1)

Let us describe these representations.

The following two representations of degree 1

⇢1 : G �! GL(V1) ' C⇤

� 7�! 1

⇢2 : G �! GL(V2) ' C⇤

� 7�! sgn(�)

are irreducible.

Let us consider C4 with its canonical basis E = {e1, e2, e3, e4}. Then we

can define the following representation of S4:

⇢0 : G �! GL(C4)

� 7�! ⇢0�

⇢0� : C4 �! C4

ei 7�! e�(i)
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The representation above is not an irreducible representation of S4. Indeed,

if we consider the vector subspace V3 of C4:

V3 = {(x1, x2, x3, x4) 2 C4 | x1 + x2 + x3 + x4 = 0},

then it is stable under the action of S4. In fact for (x1, x2, x3, x4) 2 V3

⇢0�((x1, x2, x3, x4)) = ⇢0�(x1e1 + x2e2 + x3e3 + x4e4) =

= x1⇢
0
�(e1) + x2⇢

0
�(e2) + x3⇢

0
�(e3) + x4⇢

0
�(e4) = 0

So we consider the subrepresentation ⇢3 = ⇢0|V3
of ⇢0:

⇢3 : G �! GL(V3)

� 7�! ⇢3�

⇢3� : V3 �! V3

v 7�! ⇢0�(v)

Let BV3 = {e1�e2, e2�e3, e3�e4} be a basis of V3, we now find the character

of the representation ⇢3 by computing it on a representative of each conjugacy

class:

⇢3(12) : V3 �! V3

e1 � e2 7�! e2 � e1

e2 � e3 7�! e1 � e3

e3 � e4 7�! e3 � e4

0

B

B

@

-1 1 0

0 1 0

0 0 1

1

C

C

A

�3((12)) = 1

⇢3(123) : V3 �! V3

e1 � e2 7�! e2 � e3

e2 � e3 7�! e3 � e1

e3 � e4 7�! e1 � e4

0

B

B

@

0 -1 1

1 -1 1

0 0 1

1

C

C

A

�3((123)) = 0

⇢3(1234) : V3 �! V3

e1 � e2 7�! e2 � e3

e2 � e3 7�! e3 � e4

e3 � e4 7�! e4 � e1

0

B

B

@

0 0 -1

1 0 -1

0 1 -1

1

C

C

A

�3((1234)) = �1
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⇢3(12)(34) : V3 �! V3

e1 � e2 7�! e2 � e1

e2 � e3 7�! e1 � e4

e3 � e4 7�! e4 � e3

0

B

B

@

-1 1 0

0 1 0

0 1 -1

1

C

C

A

�3((12)(34)) = �1

We observe that:

(�3,�3) =
1

24
(9 · 1 + 1 · 6 + 0 · 8 + 1 · 6 + 1 · 3) = 1

This shows that ⇢3 is irreducible.

Thus the equation 1.1 becomes:

Vreg = V1 � V2 � 3V3 � n4V4 � n5V5

Therefore the dimensions of the last two irreducible representations of S4

satisfy the equation:

12 + 12 + 32 + n2
4 + n2

5 = 24

One can easily see that one of the two irreducible representations must have

dimension 3 and the other must have dimension 2.

Consider the tensor product V4 = V3 ⌦ V2, we have:

BV4 = {(e1 � e2)⌦ v2, (e2 � e3)⌦ v2, (e3 � e4)⌦ v2}

where we supposed V2 = hv2i. Consider the following representation:

⇢4 : G �! GL(V3 ⌦ V2).

By Proposition 1.17 we have �4 = �3 · �2 and so:

�4(id) = 3 �4((12)) = -1 �4((123)) = 0 �4((1234)) = 1 �4((12)(34)) = -1

We see that the character of ⇢4 is di↵erent from the character of any other ir-

reducible representation we have already constructed. So ⇢4 is not isomorphic

to any of the previous ones. We observe that:

(�4,�4) =
1

24
(9 · 1 + 1 · 6 + 0 · 8 + 1 · 6 + 1 · 3) = 1
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which shows that ⇢4 is irreducible.

The last irreducible character �5 can be derived from the following table

taking into consideration the character of the regular representation:

Table 1.1: Character table of S4

id (12) (123) (1234) (12)(34)

�1 1 1 1 1 1

�2 1 -1 1 -1 1

�3 3 1 0 -1 -1

�4 3 -1 0 1 -1

�5 2 0 -1 0 2

�reg 24 0 0 0 0

1.2.6 Abelian subgroups and the cyclic group Cn

Let G be a group. G is abelian if st = ts for all s, t 2 G. This amounts to

saying that each conjugacy class of G consists of a single element and that

each function on G is a class function. The linear representations of such a

group are particularly simple:

Theorem 1.29. The following properties are equivalent:

i) G is abelian.

ii) All the irreducible representations of G have degree 1.

Proof . See [19], Theorem 9; pag 25.

Corollary 1.30. Let A be an abelian subgroup of G, let a be its order and

let g be that of G. Each irreducible representation of G has degree 6 g/a.

Proof . See [19], Corollary; pag 25.

We now consider Cn the cyclic group of order n consisting of the powers

1, r, . . . , rn�1
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of an element r such that rn = 1. It can be realized as the group of rotations

through angles 2k⇡/n around an axis. It is an abelian group.

According to Theorem 1.29, the irreducible representations of Cn are of de-

gree 1. Such a representation associates with r a complex number w:

⇢ : Cn �! C⇤

r 7�! w

This representation associates with rk the number wk; since rn = 1, we have

wn = 1, that is:

w = e2⇡ih/n with h = 0, 1, . . . , n� 1

We thus obtained n irreducible representations of degree 1 whose charac-

ters �0,�1, . . . ,�n�1 are given by:

�h(r
k) = e2⇡ihk/n

For n=3, for example, the character table is the following:

id r r2

�0 1 1 1

�1 1 w w2

�2 1 w2 w

where

w = e2⇡i/3 = �1

2
+ i

p
3

2

1.2.7 Induced representations

We begin this subsection by studying the tensor product of two modules

over a ring:

Definition 1.31. Given a ring R, a right R-module M , a left R-module N

and an abelian group G, a map

� : M ⇥N �! G

(m,n) 7�! �(m,n)
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is said to be R-balanced if for all m,m0 2 M and n, n0 2 N and r 2 R we

have:

- �(m,n+ n0) = �(m,n) + �(m,n0)

- �(m+m0, n) = �(m,n) + �(m0, n)

- �(m · r, n) = �(m, r · n)

If R is abelian then the left R-module coincide with the right R-module.

Definition 1.32. Given a ring R, a right R-module M and a left R-module

N , the tensor product of two R-modules M⌦RN is an abelian group together

with a R-balanced product

⌦ : M ⇥N �! M ⌦R N

which is universal in the following sense: for any abelian group G and for

any R-balanced product f : M ⇥N �! G there is only one group ho-

momorphism ef : M ⌦R N �! G such that:

ef � ⌦ = f

If R is abelian, then M ⌦R N can be equipped with this map

R⇥ M ⌦R N �! M ⌦R N

r · (x⌦ y) 7�! (r · x)⌦ y = x⌦ (r · y)

With this structure M ⌦R N becomes an R-module.

Let R, S be rings. Suppose that the ring R is a subring of the ring S.

If N is a left S-module, then N can also be naturally considered as a left R-

module since the elements of R (being elements of S) act onN by assumption.

More generally, if f : R �! S is a ring homomorphism from R to S

with f(1R) = f(1S) (for example the injection map if R is a subring of S as

above) then it is easy to see that N can be considered as an R-module with

r · n = f(r) · n 8r 2 R and 8n 2 N.
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In this situation S can be considered as an extension of the ring R and the

resulting R-module is said to be obtained from N by restriction of scalars

from S to R.

Now we want to try to do the opposite: suppose that R is a subring of S,

we start with an R-module N and attempt to define an S-module structure

on N that extends the action of R on N to an action of S on N (hence ”ex-

tending the scalars” from R to S). In general this is impossible: for example

Z is a Z-module but it cannot be made into a Q-module, (if it could, then
1
2 · 1 = z 2 Z and z would be an element of Z with z + z = 1, which is im-

possible). Although Z itself cannot be made into a Q-module it is contained

in a Q-module, namely Q itself.

We now construct for a general R-module N an S-module that is the

best possible target in which one can try to embed N . Consider the tensor

product of the two R-modules S ⌦R N . The elements of S ⌦R N can be

written (non-uniquely in general) as finite sums of elements of the form s⌦n

with s 2 S, n 2 N .

The tensor product S ⌦R N is naturally a left S-module under the action

defined by:

S ⇥ S ⌦R N �! S ⌦R N
⇣

s,
P

finite si ⌦ ni

⌘

7�!
P

finite (s si)⌦ ni

The module S ⌦R N is called the S-module obtained by extension of scalars

from the R-module N .

Example 4. • Q⌦Z Zn = Qn

• Let A be an abelian finite group, then Q⌦Z A=0

We can now give the definition of induced representation.
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Recall that, as seen in Subsection 1.2.1, if ⇢ : G �! GL(V ) is a

representation of G, this is equivalent to saying that V is a C[G]-module.

Definition 1.33. Let G be a finite group and let H be a subgroup of G.

Let W be a (left) C[H]-module. Furthermore C[G] is a (right) C[H]-module.

Let

W 0 = C[G]⌦C[H] W

be the C[G]-module obtained by scalar extension from C[H] to C[G]. Then

we call W 0 the induced representation of G induced from W . We denote the

induced representation of G from W by:

IndG
H(W )

The elements of W 0 will be of the form:

X

finite

c⌦ w c 2 C[G], w 2 W

Let R = {s1, . . . , sn} be a system of left representatives for G/H, then for

any g 2 G there exist si 2 R and h 2 H such that g = sih. Then we have:

g ⌦ w = sih⌦ w = si · h⌦ w = si ⌦ h · w = si ⌦ w0.

This implies that each element of C[G]⌦C[H] W can be written as:

X

si2R
w2W

si ⌦ w

From this we also deduce that:

dim(C[G]⌦C[H] W ) = [G : H] · dim(W )

Indeed, W 0 is a C[G]-module defined by

C[G]⇥W 0 �! W 0

(g, c⌦ w) 7�! g c⌦ w
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Remark. i) We can note that from this definition of induced representa-

tion, the existence and the uniqueness of the induced representations

are obvious.

ii) Induction is transitive: if G is a subgroup of a group K, we have:

IndK
G (Ind

G
H(W )) ' IndK

H(W )

Proposition 1.34. Let V be a C[G]-module which is a direct sum of vector

subspaces transitively permuted by G:

V =
M

i2I

Wi I ✓ N

Let i0 2 I, W = Wi0 and let H be the stabilizer of W in G:

H = {g 2 G | g ·W = W} = {g 2 G | ⇢g(W ) = W}.

Then:

i) H is a subgroup of G

ii) The C[G]-module V is induced by the C[H]-module W .

Theorem 1.35. Let H be a subgroup of G. Let (W, ✓) be a linear represen-

tation of H and let (V, ⇢) be the induced representation on G from W . Let h

be the order of H and let R be a system of representatives of G/H. For each

u 2 G, we have:

�⇢(u) =
X

r2R
r�1ur2H

�✓(r
�1ur) =

1

h

X

s2G
s�1us2H

�✓(s
�1us)

Proof . See [19], Theorem 12; pag 30.

Theorem 1.36. Let � be the character of the representation ⇢ of G induced

by the representation ✓ of H whose character is �✓.

Let x be an element of G and Cj its conjugacy class in G with hj elements,

and let g = gjhj where g is the order of G. Let h be the order of H. Then:

�(x) =
gj
h

X

z2Cj\H

�✓(z)
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Proof . If G is a finite group, for every a 2 G the elements in the conjugacy

class of a are in 1� 1 correspondence with the cosets of the centralizer:

CG(a) = {g 2 G | ga = ag}

This can be seen by observing that any two elements b, c belonging to the

same coset of CG(a), i.e. there exists an element z in CG(a) such that b = zc,

give rise to the same element when conjugating a:

b�1ab = c�1z�1azc = c�1ac

Thus the number of elements in the conjugacy class of a is the index [G :

CG(a)]. The cardinality of |CG(a)| and its cosets is g/hj = gj. We have seen

that two elements that belong to the same coset of CG(a) give rise to the

same element when conjugating a.

We define:

�1(w) =

8

<

:

�✓(w) w 2 H

0 w /2 H.

From Theorem 1.35 we know that:

�(x) =
1

h

X

y2G
y�1xy2H

�✓(y
�1xy) =

1

h

X

y2G

�1(y
�1xy) (1.2)

As y ranges over G, y�1xy ranges over Cj and give the same z 2 Cj exactly

gj times. From equation (1.2) we obtain:

�(x) =
1

h
gj
X

z2Cj

�1(z) =
1

h
gj

X

z2Cj\H

�✓(z)

Definition 1.37. If f is a class function on H, we consider the function f 0

on G defined by the formula

f 0(s) =
1

h

X

t2G
t�1st2H

f(t�1st), h = |H|.

We say that f 0 is induced by f and denote it by IndG
H(f).
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Proposition 1.38. i) The function IndG
H(f) is a class function on G.

ii) If f is the character of a representation W of H, IndG
H(f) is the char-

acter of the induced representation IndG
H(W ) of G.

Proof . Assertion ii) follows from Theorem 1.35.

Regarding assertion i) see [19], Proposition 20; pag 56.

If � is a function on G, we denote by Res(�) its restriction to the subgroup

H.

Theorem 1.39 (Frobenius reciprocity). If  is a class function on H and

� a class function on G, we have

h  ,Res(�) iH = h IndG
H( ),� iG

Proof . See [19], Theorem 13; pag 56.

Corollary 1.40. Let H be a subgroup of G. Let also (✓,W ) be an irreducible

representation of H and let (⇢, V ) be an irreducible representation of G. Then

the number of times that W occurs in Res(V ) is equal to the number of times

that V occurs in IndG
H(W ).

Proof . It follows directly from Theorem 1.39.

Example 5. We compute the induced representations from C4 to S4.

C4 = {id, (1234), (13)(24), (1432)} ' Z4 [S4 : C4] = 6

The irreducible representation of C4 are:

⇢1 : C4 �! GL( eV1) ' C⇤

(1234) 7�! 1

⇢2 : C4 �! GL( eV2) ' C⇤

(1234) 7�! �1

⇢3 : C4 �! GL( eV3) ' C⇤

(1234) 7�! i

⇢4 : C4 �! GL( eV4) ' C⇤

(1234) 7�! �i

And this is the character table of C4:
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Table 1.2: Character table of C4

id (1234) (13)(24) (1432)

�fV1
1 1 1 1

�fV2
1 -1 1 -1

�fV3
1 i -1 -i

�fV4
1 -i -1 i

The representations induced from C4 to S4 are:

W1 = IndS4
C4
( eV1) W2 = IndS4

C4
( eV2) W3 = IndS4

C4
( eV3) W4 = IndS4

C4
( eV4)

W1,W2,W3,W4 are representation of S4 of degree 6. We want to apply The-

orem 1.39 to get the irreducible decomposition of these modules.

In the example in Subsection 1.2.5 we computed the irreducible representa-

tions of S4 and from Table 1.1 we get the table of their restriction to the

subgroup C4:

Table 1.3: Table of restrictions from S4 to C4

id (1234) (13)(24) (1432)

Res(�V1) 1 1 1 1

Res(�V2) 1 -1 1 -1

Res(�V3) 3 -1 -1 -1

Res(�V4) 3 1 -1 1

Res(�V5) 2 0 2 0

We can now apply Theorem 1.39:

(�W1 ,�V1)S4 = (�fV1
,Res(�V1))C4 = 1

(�W1 ,�V2)S4 = (�fV1
,Res(�V2))C4 = 0

(�W1 ,�V3)S4 = (�fV1
,Res(�V3))C4 = 0

(�W1 ,�V4)S4 = (�fV1
,Res(�V4))C4 = 1
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(�W1 ,�V5)S4 = (�fV1
,Res(�V5))C4 = 1

We have calculated how many times the Vi occur in W1, so we get:

W1 ' V1 � V4 � V5 �W1 = �V1 + �V4 + �V5

We repeat the procedure for W2,W3,W4:

(�W2 ,�V1)S4 = (�fV2
,Res(�V1))C4 = 0

(�W2 ,�V2)S4 = (�fV2
,Res(�V2))C4 = 1

(�W2 ,�V3)S4 = (�fV2
,Res(�V3))C4 = 1

(�W2 ,�V4)S4 = (�fV2
,Res(�V4))C4 = 0

(�W2 ,�V5)S4 = (�fV2
,Res(�V5))C4 = 1

And then:

W2 ' V2 � V3 � V5 �W2 = �V2 + �V3 + �V5

(�W3 ,�V1)S4 = (�fV3
,Res(�V1))C4 = 0

(�W3 ,�V2)S4 = (�fV3
,Res(�V2))C4 = 0

(�W3 ,�V3)S4 = (�fV3
,Res(�V3))C4 = 1

(�W3 ,�V4)S4 = (�fV3
,Res(�V4))C4 = 1

(�W3 ,�V5)S4 = (�fV3
,Res(�V5))C4 = 0

Thus:

W3 ' V3 � V4 �W3 = �V3 + �V4

(�W4 ,�V1)S4 = (�fV4
,Res(�V1))C4 = 0

(�W4 ,�V2)S4 = (�fV4
,Res(�V2))C4 = 0

(�W4 ,�V3)S4 = (�fV4
,Res(�V3))C4 = 1

(�W4 ,�V4)S4 = (�fV4
,Res(�V4))C4 = 1
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(�W4 ,�V5)S4 = (�fV4
,Res(�V5))C4 = 0

Hence:

W4 ' V3 � V4 �W4 = �V3 + �V4

We note that W3 ' W4 and we report the character table of the induced

representations from C4 to S4.

Table 1.4: Character table of the induced representations from C4 to S4

id (12) (123) (1234) (12)(34)

�W1 6 0 0 2 2

�W2 6 0 0 -2 2

�W3 6 0 0 0 -2

�W4 6 0 0 0 -2



34 1. Preliminaries in Algebra



Chapter 2

Preliminaries in Topology and

Combinatorics

2.1 Simplicial homology

In this Section we recall the fundamental definitions of simplicial homol-

ogy. In the end of the Section we prove the Alexander duality.

2.1.1 Simplicial complexes

Definition 2.1. Given a set {a0, . . . , an} of points of Rp, this set is said to

be geometrically independent if for any (real) scalars ti, the equations

n
X

i=0

ti = 0 and
n
X

i=0

tiai = 0

imply that t0 = t1 = · · · = tn = 0.

It is clear that a one point set is always geometrically independent. Ele-

mentary arguments show that in general {a0, . . . , an} is geometrically inde-

pendent if and only if the vectors

a1 � a0, . . . , an � a0

35
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are linearly independent in the sense of ordinary linear algebra. Thus two

distinct points in Rp form a geometrically independent set, as do three non-

collinear points, four non-coplanar points, and so on.

Definition 2.2. Given a geometrically independent set of points {a0, . . . , an},
we define the n-plane P spanned by these points as the set of all points x 2 Rp

such that

x =
n
X

i=0

tiai

for some scalars ti with
P

ti = 1. Since the ai’s are geometrically indepen-

dent, the ti’s are uniquely determined by x. Note that each point ai belongs

to the plane P .

The plane P can also be described as the set of all points x such that

x = a0 +
n
X

i=1

ti(ai � a0)

for some scalars t1, . . . , tn; in this form we speak of P as the plane through

a0 parallel to the vectors ai � a0.

Definition 2.3. Let {a0, . . . , an} be a geometrically independent set in Rp.

We define the n-simplex � spanned by a0, . . . , an as the set of all points

x 2 Rp such that

x =
n
X

i=0

tiai where
n
X

i=0

ti = 1, ti > 0.

The numbers ti’s are uniquely determined by x; they are called the barycen-

tric coordinates of the point x of � with respect to a0, . . . , an.

Example 6. In low dimensions, one can easily draw a simplex. A 0-simplex

is a point, of course. The 1-simplex spanned by a0 and a1 consists of all

points of the form

x = ta0 + (1� t)a1 where 0 6 t 6 1.

This is just the line segment joining a0 and a1. Similarly, the 2-simplex �

spanned by a0, a1, a2 equals the triangle having these three points as vertices.
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Recall that a subset A of Rp is said to be convex if for each pair x, y of

points of A, the line segment joining them lies in A.

Let � be the n-simplex spanned by {a0, . . . , an}, then the following prop-

erties hold:

1) � is a compact, convex set in Rp, which equals the intersection of all

convex sets in Rp containing a0, . . . , an.

2) Given a simplex �, there is one and only one geometrically independent

set of points spanning �.

The points a0, . . . , an that span � are called the vertices of �; the number n is

called the dimension of �. Any simplex spanned by a subset of {a0, . . . , an}
is called a face of �. The faces of � di↵erent from � itself are called the

proper faces of �; their union is called the boundary of � and denoted by

Bd(�). The interior of � is defined as Int(�) = � r Bd(�).

Since Bd(�) consists of all points x of � such that at least one of the

barycentric coordinates ti(x) is zero, Int(�) consists of those points of � for

which ti(x) > 0 for all i.

Definition 2.4. A simplicial complex K in Rp is a collection of simplices in

Rp such that:

i) Every face of a simplex of K is in K.

ii) The intersection of any two simplices of K is a face of each of them.

The following lemma is sometimes useful in verifying that a collection of

simplices is a simplicial complex:

Lemma 2.5. A collection K of simplices is a simplicial complex if and only

if the following hold:

(1) Every face of a simplex of K is in K
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(2) Every pair of distinct simplices of K have disjoint interiors.

Proof . See [15], Lemma 2.1; pag 8.

Definition 2.6. If L is a sub-collection of K that contains all faces of its

elements, then L is a simplicial complex in its own right; it is called a sub-

complex of K. One sub-complex of K is the collection of all simplices of K

of dimension at most l; it is called the l-skeleton of K and is denoted by K(l).

The points of the collection K(0) are called the vertices of K.

Definition 2.7. Let |K| be the subset of Rp that is the union of the simplices

of K. Giving each simplex its natural topology as a subspace of Rp, we then

topologize |K| by declaring a subset A of |K| to be closed in |K| if and only

if A \ � is closed in �, for each � 2 K. It is easy to see that this defines a

topology on |K|. The space |K| is called the underlying space of K, or the

polytope of K.

Now we introduce the notion of a simplicial map of one complex into

another.

Lemma 2.8. Let K and L be complexes, and let

f : K(0) �! L(0)

be a map such that whenever the vertices v0, . . . , vn of K span a simplex of

K, the points f(v0), . . . , f(vn) are vertices of a simplex of L. Then f can

be extended to a continuous map g : |K| ! |L| as follows: for x =
Pn

i=0 tivi

g(x) =
n
X

i=0

tif(vi)

We call g the linear simplicial map induced by the vertex map f .

Proof . See [15], Lemma 2.7; pag 12.

Lemma 2.9. Suppose

f : K(0) �! L(0)
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is a bijective correspondence such that the vertices v0, . . . , vn of K span a

simplex of K if and only if f(v0), . . . , f(vn) span a simplex of L. Then the

induced simplicial map

g : |K| ! |L|

is a homeomorphism. Each simplex � of K is mapped by g onto a simplex ⌧

of L of the same dimension as �. The map g is called a simplicial homeo-

morphism of K with L.

Proof . See [15], Lemma 2.8; pag 12.

2.1.2 Abstract simplicial complex

Definition 2.10. An abstract simplicial complex is a collection S of finite

nonempty sets, such that if A is an element of S and B ✓ A is a nonempty

subset of A then B 2 S.

The element A of S is called a simplex of S; its dimension is one less than

the number of its elements. Each nonempty subset of A is called a face of

A. The dimension of S is the largest dimension of one of its simplices, or it

is infinite if there is no such largest dimension. The vertex set V of S is the

union of the one-point elements of S; we shall make no distinction between

the vertex v 2 V and the 0-simplex {v} 2 S. A sub-collection of S that is

itself a complex is called a sub-complex of S.

Definition 2.11. Two abstract complexes S and T are said to be isomorphic

if there is a bijective correspondence f mapping the vertex set of S to the

vertex set of T such that:

{a0, . . . , an} 2 S if and only if {f(a0), . . . , f(an)} 2 T

Definition 2.12. If K is a simplicial complex, let V = K(0) be the vertex

set of K. Let R be the collection of all subsets {a0, . . . , an} of V such that

the vertices a0, . . . , an span a simplex of K. The collection R is called the

vertex scheme of K.
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The collectionR is a particular example of an abstract simplicial complex.

Theorem 2.13. a) Every abstract complex S is isomorphic to the vertex

scheme of some simplicial complex K.

b) Two simplicial complexes are simplicial homeomorphic if and only if

their vertex schemes are isomorphic as abstract simplicial complexes.

Proof . See [15], Theorem 3.1; pag 15.

Definition 2.14. If the abstract simplicial complex S is isomorphic to the

vertex scheme of the simplicial complex K, we call K a geometric realization

of S. It is uniquely determined up to simplicial homeomorphism.

Example 7. Let v1, v2 be two independent vectors in R2 and let

� = {v1, v2, v1 + v2, 2v1 + v2}.

We now consider the collection of independent subsets of �:

S =
n

{v1, v2}, {v1, v1 + v2}, {v1, 2v1 + v2}, {v2, v1 + v2}, {v2, 2v1 + v2},

{v1 + v2, 2v1 + v2}, {v1}, {v2}, {v1 + v2}, {2v1 + v2}
o

The collection S is an abstract simplicial complex.

2.1.3 Homology groups

Definition 2.15. Let � be a simplex (either geometrical or abstract). We

define two orderings of its vertex set to be equivalent if they di↵er from one

another by an even permutation. If dim(�) > 0, the orderings of the vertices

of � then fall into two equivalence classes. Each of these classes is called an

orientation of �. (If � is a 0-simplex, then there is only one class and hence

only one orientation of �.)

An oriented simplex is a simplex � together with an orientation of �.

If the points v0, . . . , vp are geometrically independent, we shall use the sym-

bol:

v0 . . . vp
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to denote the simplex they span, and we shall use the symbol

[v0 . . . vp]

to denote the oriented simplex consisting of the simplex v0 . . . vp and the

equivalence class of the particular ordering (v0 . . . vp).

Definition 2.16. Let K be a simplicial complex. A p-chain of K is a

function cp from the oriented p-simplices of K to the integers, such that:

i) cp(�) = �cp(�0) if � and �0 are opposite orientations of the same simplex.

ii) cp(�) = 0 for all but finitely many oriented p-simplices �.

We add p-chains by adding their values; the resulting group is denoted by

Cp(K) and is called the group of (oriented) p-chains of K. If p < 0 or

p > dim(K) we let Cp(K) denote the trivial group.

If � is an oriented simplex, the elementary chain c corresponding to � is

a function defined as follows:

c(�) = 1

c(�0) = �1 if �0 is the opposite orientation of �,

c(⌧) = 0 for all other oriented simplices ⌧ .

By abuse of notation, we often use the symbol � to denote not only a

simplex, or an oriented simplex, but also to denote the elementary p-chain

c corresponding to the oriented simplex �. With this convention, if � and

�0 are opposite orientation of the same simplex, then we can write �0 = ��,
because this equation holds when � and �0 are interpreted as elementary

chains.

Lemma 2.17. Cp(K) is free abelian: a basis for Cp(K) can be obtained by

orienting each p-simplex and using the corresponding elementary chain as a

basis.



42 2. Preliminaries in Topology and Combinatorics

Proof . See [15], Lemma 5.1; pag 28.

The group C0(K) di↵ers from the others, since it has a natural basis (since

a 0-simplex has only one orientation). The group Cp(K) has no natural basis

if p > 0; one must orient the p-simplices of K in some arbitrary fashion in

order to obtain a basis.

Definition 2.18. We now define a homomorphism

@p : Cp(K) �! Cp�1(K)

called the boundary operator. If � = [v0, . . . , vp] is an oriented simplex with

p > 0, we define

@p(�) = @p([v0, . . . , vp]) =
p
X

i=0

(�1)p[v0, . . . , v̂i, . . . , vp] (2.1)

where the symbol v̂i means that the vertex vi is to be deleted from the array.

Since Cp(K) is the trivial group for p < 0, the operator @p is the trivial

homomorphism for p 6 0

We must check that @p is well-defined and that �p(��) = �@p(�). For

this purpose, it su�ces to show that the right side of Equation (2.1) changes

sign if we exchange two adjacent vertices in the array [v0, . . . , vp]. So let us

compare the expressions for

�p([v0, . . . , vj, vj+1, . . . , vp]) and �p([v0, . . . , vj+1, vj, . . . , vp])

For i 6= j, j + 1, the ith terms in these two expressions di↵er precisely by a

sign; the terms are identical except that vj and vj+1 have been interchanged.

What about the ith terms for i = j and i = j + 1? In the first expression,

one has:

(�1)j[. . . , vj�1, v̂j, vj+1, vj+2, . . . ] + (�1)j+1[. . . , vj�1, vj, v̂j+1, vj+2, . . . ]

In the second expression, one has:

(�1)j[. . . , vj�1, v̂j+1, vj, vj+2, . . . ] + (�1)j+1[. . . , vj�1, vj+1, v̂j, vj+2, . . . ].

Hence these two expressions di↵er by a sign.
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Example 8. For a 1-simplex, we have

@1([v0, v1]) = v1 � v0

For a 2-simplex one has:

@2([v0, v1, v2]) = [v1, v2]� [v0, v2] + [v0, v1]

Lemma 2.19. @p�1 � @p = 0

Proof . See [15], Lemma 5.3; pag 30.

Definition 2.20. The kernel of

@p : Cp(K) �! Cp�1(K)

is called the group of p-cycles and denoted by Zp(K). The image of

@p+1 : Cp+1(K) �! Cp(K)

is called the group of p-boundaries and is denoted by Bp(K). By Lemma

2.19, each boundary of a p + 1 chain is automatically a p-cycle. That is,

Bp(K) ⇢ Zp(K). We define

Hp(K) = Zp(K)/Bp(K)

and call it the pth homology group of K.

Theorem 2.21. Let K be a complex. Then the group H0(K) is free abelian.

If {v↵} is a collection consisting of one vertex from each connected component

of |K|, then the homology classes of the chains v↵ form a basis for H0(K).

Proof . See [15], Theorem 7.1; pag 41.

It is convenient to consider another version of the 0-dimensional homology.

Definition 2.22. Let

✏ : C0(K) �! Z
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be the surjective homomorphism defined by ✏(v) = 1 for each vertex v of K.

Then if c is a 0-chain, ✏(c) equals the sum of the values of c on the vertices

of K. The map ✏ is called the augmentation map for C0(K). We have just

noted that ✏(@(d)) = 0 if d is a 1-chain. We define the reduced homology

group of K in dimension 0, denoted by eH0(K), by the equation:

eH0(K) = ker(✏)/Im(@1)

If p > 0, we let eHp(K) denote the usual group Hp(K).

The relation between reduced and ordinary homology is as follows:

Theorem 2.23. The group eH0(K) is free abelian, and

eH0(K)� Z ' H0(K)

Thus eH0(K) vanishes if |K| is connected. If |K| is not connected, let {v↵}
consist of one vertex from each component |K|, let ↵0 be a fixed index. Then

the homology classes of the chains v↵ � v↵0, for ↵ 6= ↵0, form a basis for
eH0(K).

Proof . See [15], Theorem 7.2; pag 43.

2.1.4 Homology groups with arbitrary coe�cients

Definition 2.24. Let R be an abelian group. Let K be a simplicial complex.

A p-chain of K with coe�cients in R is a function cp from the oriented p-

simplices of K to R, such that:

i) cp(�) = �cp(�0) if � and �0 are opposite orientations of the same simplex;

ii) cp(�) = 0 for all but finitely many oriented p-simplices �.

We add p-chains by adding their values; the resulting group is denoted by

Cp(K;R) and is called the group of (oriented) p-chains of K with coe�cients

in R.
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If � is an oriented simplex and if g 2 R, we denote by g� the elementary

chain defined as follows:

- g�(�) = g

- g�(�0) = �g if �0 is the opposite orientation of �

- g�(⌧) = 0 for all other oriented simplices ⌧ .

If one orients all the p-simplices of K, then each chain cp can be written

uniquely as a finite sum

cp =
X

i

gi�i

of elementary chains. Thus Cp(K,R) is the direct sum of subgroups isomor-

phic to R, one for each p-simplex of K.

The boundary operator

@p : Cp(K,R) �! Cp�1(K,R)

is defined easily by the formula:

@p(g�) = g@p(�)

where @p(�) is the ordinary boundary, defined earlier. As before, � � � = 0

and we define Zp(K,R) to be the kernel of the homomorphism:

@p : Cp(K,R) �! Cp�1(K,R).

Furthermore we define Bp(K,R) to be the image of the following homomor-

phism:

@p�1 : Cp�1(K,R) �! Cp(K,R)

and

Hp(K,R) = Zp(K,R)/Bp(K,R)

These groups are called the group of the cycles, the group of the boundaries,

and the homology group of K with coe�cients in R respectively.

Of course, one can also study reduced homology with coe�cients in R. The

details are clear.
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2.1.5 Cohomology groups

Associated with any pair of abelian groups A,G is a third abelian group,

the group Hom(A,G) of all homomorphism of A into G. In this subsection

we study some of its properties.

Definition 2.25. If A and G are abelian groups, then the set Hom(A,G)

of all homomorphism of A into G becomes an abelian group if we add two

homomorphisms by adding their values in G.

Definition 2.26. A homomorphism f : A ! B gives rise to a dual

homomorphism

ef : Hom(B,G) �! Hom(A,G)

going in the reverse direction. The map ef assigns to the homomorphism

� : B ! G , the composite

ef(�) : A
f�! B

��! G.

That is, ef(�) = � � f .

Definition 2.27. In the context of group theory, a sequence

G0
f1�! G1

f2�! G2 · · · fn�! Gn

of groups and group homomorphism is called exact if the image of each

homomorphism is equal to the kernel of the next:

Im(fk) = Ker(fk+1)

Note that the sequence of groups and homomorphisms may be either finite

or infinite.

Example 9. If the following sequence

0 �! A
f�! B

g�! C �! 0

is exact then f is an injective homomorphism and g is a surjective homomor-

phism. Furthermore:

B/f(A) ' C
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Theorem 2.28. Let G be an abelian group. Let f be a homomorphism, let
ef be the dual homomorphism. Then:

a) If f is an isomorphism, so is ef .

b) If f is the zero homomorphism, so is ef .

c) If f is surjective, then ef is injective. That is the exactness of

B
f�! C �! 0

implies the exactness of

Hom(B,G)
ef � Hom(C,G) � 0

Proof . See [15], Theorem 41.1; pag 247.

Now we can give the definition of cohomology groups.

Definition 2.29. Let K be a simplicial complex; let R be an abelian group.

The group of p-dimensional cochains ofK, with coe�cients in R, is the group

Cp(K,R) = Hom(Cp(K), R)

The coboundary operator �p+1 is defined to be the dual of the boundary

operator @p+1 : Cp+1(K) �! Cp(K) . Thus

�p+1 : Cp(K,R) �! Cp+1(K,R)

so that �p+1 raises dimension by one. We define Zp(K;R) to the kernel of

this homomorphism, Bp+1(K,R) to be its image, and (noting that �2 = 0

because @2 = 0),

Hp(K;R) = Zp(K;R)/Bp(K;R)

These groups are called the group of cocycles, the group of coboundaries, and

the cohomology group, respectively, of K with coe�cients in R.
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If cp is a p-dimensional cochain, and cp is a p-dimensional chain, we com-

monly use the notation

hcp, cpi = cp(cp).

Proposition 2.30. Using the same notation as above, the definition of the

coboundary operator becomes:

h�p+1(c
p), dp+1i = hcp, @p+1(dp+1)i

Proof . We have:

@p+1 : Cp+1(K) �! Cp(K)

dp+1 7�! @p+1(dp+1)

and �p+1 is its dual map:

�p+1 : Cp(K) �! Cp+1(K)

cp 7�! �p+1(cp)

By definition we have:

�p+1(c
p) = cp � @p+1

and so:

�p+1(c
p)(dp+1) = (cp � @p+1)(dp+1) = cp(@p+1(dp+1))

Definition 2.31. Given a complexK, we dualize the standard augmentation

map

C1(K)
@1�! C0(K)

✏�! Z

and obtain a homomorphism e✏:

C1(K)
�1 � C0(K)

e✏ � R

called a coaugmentation. It is injective, and �1 �e✏ = 0. We define the reduced

cohomology of K by setting:

eHq(K;R) = Hq(K;R) if q > 0

and
eH0(K;R) = ker(�1)/Im(e✏)
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Theorem 2.32. If |K| is connected, then eH0(K;R) = 0. More generally,

for any complex K, we have:

H0(K;R) ' eH0(K;R)�R

Proof . See [15], Theorem 42.2; pag 256.

Proposition 2.33. Let K be a simplicial complex. Let F be a field. Then

eHp(K,F) and eHp(K,F)

have the structure of vector spaces over F. They are dual of each other as

vector spaces. Besides, both � and @ are vector space homomorphisms (linear

transformations).

Proof . See [15]; pag 324.

2.1.6 Homomorphism induced by a simplicial map

If f is a simplicial map of |K| into |L|, then f maps each p-simplex �i of

K onto a simplex ⌧i of L of the same or lower dimension. We shall define

a homomorphism of p-chains that carries a formal sum
P

i mi�i of oriented

p-simplices of K onto the formal sum
P

i mi⌧i of their images. (We delete

form the latter sum those simplices ⌧i whose dimension is less than p.) This

map in turn induces a homomorphism of homology groups. As a general

notation, we shall use the phrase

00 f : K �! L is a simplicial map 00

to mean that f is a continuous map of |K| into |L| that maps each simplex

of K linearly onto a simplex of L. Thus f maps each vertex of K to a vertex

of L, and it equals the simplicial map induced by this vertex map.

Definition 2.34. Let f : K �! L be a simplicial map. If v0 . . . vp is

a simplex of K, then the points f(v0), f(v1), . . . , f(vp) span a simplex of L.

We define a homomorphism

f# : Cp(K) �! Cp(L)
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by defining it on oriented simplices as follows:

f#([v0, . . . , vp]) =

8

<

:

[f(v0), . . . , f(vp)], if f(v0), . . . , f(vp) are distinct

0, otherwise

This map is clearly well-defined; exchanging two vertices in the expression

[v0, . . . , vp] changes the sign of the right side of the equation. The family

of homomorphisms {f#}, one in each dimension, is called the chain map

induced by the simplicial map f .

Lemma 2.35. The homomorphism f# commutes with @; therefore f# in-

duces a homomorphism

f⇤ : Hp(K) �! Hp(L)

Proof . See [15], Lemma 12.1; pag 62.

Lemma 2.36. The chain map f# preserves the augmentation map ✏; there-

fore it induces a homomorphism

f⇤ : eHp(K) �! eHp(L)

of reduced homology groups.

Proof . See [15], Lemma 12.3; pag 63.

2.1.7 Alexander Duality

Let K be an abstract simplicial complex with ground set V .

For � 2 K, let

� = V r �

Definition 2.37. The Alexander dual of K is the simplicial complex on the

same ground set defined by

K⇤ = {� ✓ V | � /2 K}

It is easy to see that K⇤⇤ = K.
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Let K be a simplicial complex with ground set V = {1, 2, . . . , n}.
For j 2 � 2 K, we define the sign

sgn(j, �) = (�1)i�1

where j is the ith smallest element of the set �. The following simple property

of the sign function will be needed.

Lemma 2.38. Let k 2 � ✓ {1, 2, . . . , n} and p(�) =
Q

i2�(�1)i�1. Then

sgn(k, �) p(� r k) = sgn(k, � [ k) p(�)

Proof .

sgn(k, �)sgn(k, � [ k) =
Y

i2�
i<k

(�1)
Y

i2�
i<k

(�1) = (�1)k�1

and

p(�)p(� r k) =
Y

i2�

(�1)i�1
Y

i2�rk

(�1)i�1 = (�1)k�1

We have also:

sgn(k, �)sgn(k, � [ k)

p(�)p(� r k)
=

(�1)k�1

(�1)k�1
= 1

sgn(k, �)sgn(k, � [ k) p(�)p(� r k) = (�1)2k�2 = 1

We obtain then:

p2(�)p2(� r k) = 1 =) p2(�) = 1 and p2(� r k) = 1

sgn2(k, �)sgn2(k, � [ k) = 1 =) sgn2(k, �) = 1 and sgn2(k, � [ k) = 1

sgn(k, �) p(� r k) = sgn(k, �) p(� r k) sgn2(k, � [ k) p2(�) =

= (�1)k�1 (�1)k�1 sgn(k, � [ k) p(�) = sgn(k, � [ k) p(�)
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We now review the definitions and notation used for (co)homology. Through-

out this subsection we suppose that R is a commutative ring containing a

unit element. In particular R could also be a field F.

Definition 2.39. Let Ci = Ci(K) be a free R-module with the free basis

{e� | � 2 K, dim(�) = i}.

The reduced chain complex of K over R is the complex

eC⇤(K) = eC⇤(K,R) = · · ·Ci+1
@i+1��! Ci

@i�! Ci�1 �! · · · , i 2 Z

whose mappings @i are defined as

@i(e�) =
X

j2�

sgn(j, �)e�rj.

The complex eC⇤(K) is formally infinite; however Ci = 0 for i < �1 or

i > dim(K). The nth reduced homology group of K over R is

eHn(K) = eHn(K;R) = ker(@n)/Im(@n+1).

Definition 2.40. Let C i = C i(K) be a free R-module with free basis

{e⇤� | � 2 K, dim(�) = i}.

The reduced cochain complex of K over R is the complex

eC⇤(K) = eC⇤(K,R) = · · ·C i�1 �i�! C i �i+1��! C i+1 �! · · · , i 2 Z

where �i = @⇤i are maps dual to @i, explicitly stated:

�i(e
⇤
�) =

X

j /2�
�[j2K

sgn(j, � [ j)e⇤�[j

The nth reduced cohomology group over R is

eHn(K) = eHn(K;R) = ker(�n+1)/Im(�n)
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We now give the definition of relative homology.

Definition 2.41. Suppose that K is a simplicial complex and A is a sub-

complex of K. Let

Ri = Ri(K,A) = Ci(K)/Ci(A)

where Ci was defined in Definition 2.39. The relative reduced chain complex

of (K,A) over R is the complex:

eC⇤(K,A) = eC⇤(K,A;R) = · · ·Ri+1
di+1��! Ri

di�! Ri�1 �! · · · , i 2 Z

where di is defined as follows:

di(e� + Ci(A)) =
X

j2�

sgn(j, �)(e�rj + Ci�1(A)).

The nth relative homology group of (K,A) over R is defined as:

eHn(K,A) = eHn(K,A;R) = ker(dn)/Im(dn+1)

Remark. When we intend to compute relative homology groups, we can iden-

tify Ri = Ci(K)/Ci(A) with a free R-module with the free basis

{e� | � 2 K, � /2 A, dim(�) = i}.

Then di can be rewritten as:

di(e�) =
X

j2�
�rj /2A

sgn(j, �) e�rj

One of the important properties of relative homology groups is that they

fit into a long exact sequence.

Lemma 2.42 (Long exact sequence of a pair). Let K be a complex; let A be

a subcomplex. Then there is a long exact sequence:

· · · �! eHn(A) �! eHn(K) �! eHn(K,A) �! eHn�1(A) �! · · ·
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Proof . See [15], Theorem 23.3; pag 133.

Suppose that K is a simplicial complex with ground set V . Let 2V be the

full simplex with vertex set V .

Lemma 2.43. Let K be a simplicial complex with ground set V . Then:

eHi(K) ' eHi+1(2
V , K)

Proof . This follows from Lemma 2.42. We have the long exact sequence of

the pair (2V , K):

· · · �! eHi+1(2
V ) �! eHi+1(2

V , K) �! eHi(K) �! eHi(2
V ) �! · · ·

Since 2V is the full simplex the groups eHi+1(2V ) and eHi(2V ) are zero. Hence,

the sequence becomes:

· · · �! 0 �! eHi+1(2
V , K) �! eHi(K) �! 0 �! · · ·

It follows that the groups eHi+1(2V , K) and eHi(K) are isomorphic.

Lemma 2.44. Let K be a simplicial complex with ground set V of size n.

Then
eHi+1(2

V , K) ' eHn�i�3(K⇤)

Proof . Suppose that V = {1, 2, . . . , n}. The chain complex for reduced ho-

mology of the pair (2V , K) is the complex:

· · ·Rj+1
dj+1��! Rj

dj�! Rj�1
dj�1��! · · · , j 2 Z

where Rj = he� | � ✓ V, � /2 K, dim(�) = ji, and the dj’s are the unique

homomorphisms satisfying:

dj(e�) =
X

k2�
�rk/2K

sgn(k, �) e�rk.

The cochain complex for reduced cohomology of K⇤ is the complex:

· · · �j�1��! Cj�1 �j�! Cj �j+1��! · · · , j 2 Z
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where

Cj = he⇤� | � ✓ V, dim(�) = j, � 2 K⇤i = he⇤� | � ✓ V, dim(�) = n�j�2, � /2 Ki

and the �j’s are the unique homomorphisms satisfying:

�j(e
⇤
�) =

X

k/2�
�[k2K⇤

sgn(k, � [ k)e⇤�[k =
X

k2�
�rk/2K

sgn(k, � [ k)e⇤
�rk

.

Define p(�) as in Lemma 2.38 and let �j be the following isomorphism:

�j : Rj �! Cn�j�2

e� 7�! p(�) e⇤�

for � /2 K with dim(�) = j. (Note that these two conditions are equivalent

to dim(�) = n� j � 2, � 2 K⇤). We then have the following diagram:

dj+1���! Rj
dj���! Rj�1

dj�1���!

�j

?

?

y

�j�1

?

?

y

�n�j�2����! Cn�j�2 �n�j�1����! Cn�j�1 �n�j���!

We want to check that:

�j�1 � dj = �n�j�1 � �j.

Let � ✓ V , � /2 K, dim(�) = j. Then:

(�j�1�dj)(e�) = �j�1

✓

X

k2�
�rk/2K

sgn(k, �) e�rk

◆

=
X

k2�
�rk/2K

sgn(k, �) p(�rk) e⇤
�rk

(�n�j�1 � �j)(e�) = �n�j�1

�

p(�) e⇤�
�

=
X

k2�
�rk/2K

sgn(k, � [ k) p(�) e⇤
�rk

These two sums are equal term by term, due to Lemma 2.38. Thus � is

an isomorphism of the complexes, implying:

eHi+1(2
V , K) ' eHn�i�3(K⇤)
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Theorem 2.45 (Combinatorial Alexander duality). Let K be a simplicial

complex with ground set of size n. Then

eHi(K) ' eHn�i�3(K⇤).

Here eH stands for reduced homology (resp. cohomology) over a given ring R.

Proof . Combining the results of Lemma 2.43 and Lemma 2.44 we obtain the

proof of the theorem.

Example 10. Let V = {v1, v2, v3, v4} be the ground set of the following

abstract simplicial complex

� =
n

{v1, v2}, {v2, v3}, {v1, v3}, {v1, v4}, {v3, v4}, {v1}, {v2}, {v3}, {v4}
o

We now find the dual simplicial complex of �:

�⇤ = {A ✓ V | V r A /2 �} =
n

{v1}, {v2}, {v3}, {v4}, {v1, v3}
o

We have the following geometric realizations:

Figure 2.1: � Figure 2.2: �⇤

We deduce from the Alexander duality with n = 4 working with coe�-

cients over any field F that

eHi(�,F) ' eH1�i(�⇤,F)
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In particular we have:
eH1(�,F) ' eH0(�⇤,F)

Geometrically we see that the dimension of eH1(�,F) is two. The simplicial

complex �⇤ has 3 connected components then the dimension of eH0(�⇤,F) is
two, therefore the dimension of eH0(�⇤,F) is also two.



58 2. Preliminaries in Topology and Combinatorics

2.2 Matroid theory

In this Section we recall the fundamental definitions of matroid theory. In

the end of the section we explicitly calculate the representations on the top

homology space of the simplicial complex associated with the dual matroid

of K4.

2.2.1 Basic definitions

Definition 2.46. A matroid M is an ordered pair (E, I) consisting of a

finite set E and a collection I of subsets of E satisfying the three following

conditions:

(I1) ; 2 I

(I2) If A 2 I and A0 ✓ A, then A0 2 I

(I3) If A and B are in I and |A| < |B|, then there is an element e 2 BrA

such that A [ {e} 2 I.

The first two properties define an abstract simplicial complex (See Definition

2.10).

The members of I are the independent sets of M , and E is the ground

set of M . We shall often write IN(M) for I and E(M) for E. A subset of

E that is not in I is called dependent.

Proposition 2.47. Let E be the set of column labels of an m⇥ n matrix A

over a field K, and let I be the set of subsets X of E for which the multiset

of columns labeled by X is linearly independent in the vector space V (m,K).

Then M = (E, I) is a matroid.

The matroid obtained as above from the matrix A will be denoted by

M [A]. This matroid is called the vector matroid of A.
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Example 11. Let A be the matrix:

1 2 3 4 5

1 0 0 1 1

0 1 0 0 1

over the field R. Then E = {1, 2, 3, 4, 5} and

I = {;, {1}, {2}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}}

Thus the set of dependent sets of this matroid is

{{3}, {1, 3}, {1, 4}, {2, 3}, {3, 4}, {3, 5}} [ {X ✓ E : |X| > 3}

The set of minimal dependent sets, that is, dependent sets all of whose proper

subsets are independent is:

{{3}, {1, 4}, {1, 2, 5}, {2, 4, 5}}.

Definition 2.48. A minimal dependent set in an arbitrary matroid M will

be called a circuit of M and we shall denote the set of circuits of M by C or

C(M). A circuit of M having n elements will also be called an n-circuit.

Definition 2.49. A matroid is called simple if it has no circuits consisting

of one or two elements.

Evidently, as in the last example, once I has been specified, C(M) can be

determined. Similarly, I can be determined from C(M): the members of I

are those subsets of E that contain no member of C(M). Thus a matroid is

uniquely determined by its set C of circuits.

We now examine some properties of C with a view to characterizing those

subsets of 2E that can occur as the set of circuits of a matroid on E. It is

easy to see that:

(C1) ; 2 C;
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(C2) If C1 and C2 are members of C and C1 ✓ C2, then C1 = C2.

Lemma 2.50. The set C of circuits of a matroid has the following property:

(C3) If C1 and C2 are distinct members of C and e 2 C1 \ C2, then there is

a member C3 2 C such that

C3 ✓ (C1 [ C2)r {e}

Proof . See [16], Lemma 1.1.3; pag 9.

Theorem 2.51. Let E be a set and C be a collection of subsets of E satisfying

(C1)-(C3). Let I be the collection of subsets of E that contain no member of

C. Then (E, I) is a matroid having C as its collection of circuits.

Proof . See [16], Theorem 1.1.4; pag 10.

Corollary 2.52. Let C be a set of subsets of a set E. Then C is the collection

of circuits of a matroid on E if and only if C satisfies (C1)-(C2)-(C3).

We can associate a matroid to a graph:

Proposition 2.53. Let E be the set of edges of a graph � and C be the set

of edge sets of simple cycles of �. Then C is the set of circuits of a matroid

on E.

Proof . See [16], Proposition 1.1.7; pag 11.

Definition 2.54. The matroid derived above from the graph � is called the

cycle matroid of �. It is denoted by M(�). Clearly a set X of edges is

independent in M(�) if and only if X does not contain the edge set of a

cycle or, equivalently, �[X], the subgraph induced by X, is a forest.

Definition 2.55. Two matroids M1 and M2 are isomorphic, written M1
⇠=

M2, if there is a bijection:

 : E(M1) �! E(M2)
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such that, for all X ✓ E(M1),  (X) is independent in M2 if and only if X is

independent in M1.

Example 12. Let � be the graph shown in figure 2.3 and let M = M(�).

Figure 2.3

Then:

E(M) = {e1, e2, e3, e4, e5} C(M) = {{e3}, {e1, e4}, {e1, e2, e5}, {e2, e4, e5}}.

Comparing M with the matroid M [A] in the previous example, we see that,

under the bijection:

 : {1, 2, 3, 4, 5} �! {e1, e2, e3, e4, e5}
i 7�! ei

a setX is a circuit inM [A] if and only if  (X) is a circuit inM . Equivalently,

a set Y is independent inM [A] if and only if  (Y ) is independent inM . Thus

the matroids M and M [A] are isomorphic.

A matroid that is isomorphic to the cycle matroid of a graph is called

graphic. So for instance the matroid M [A] is graphic.
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Definition 2.56. If � is a graph, we can form a directed graph D(�) by

arbitrarily assigning a direction to each edge. Let AD(�) denote the incidence

matrix of D(�), that is, AD(�) is the matrix [aij] whose rows and columns

are indexed by the vertices and edges, respectively, of D(�), where:

aij =

8

>

>

>

<

>

>

>

:

1, if vertex i is the tail of non-loop edge j

�1, if vertex i is the head of non-loop edge j

0, otherwise

Proposition 2.57. If � is a graph, then M(�) ⇠= M [AD(�)] over any field K
for any D(�) formed by �.

Proof . See [16], Proposition 5.1.2; pag 138.

2.2.2 Basis, Rank and Closure Operator

Definition 2.58. A maximal independent set in a matroid M is called basis

of M .

Lemma 2.59. If B1 and B2 are bases of a matroid M , then |B1| = |B2|.

Proof . See [16], Lemma 1.2.1; pag 16.

If M is a matroid and B is its collection of bases, then, by (I1):

(B1) B is non-empty.

Lemma 2.60. B satisfies the following condition:

(B2) If B1 and B2 are members of B and x 2 B1 r B2, then there is an

element y of B2 r B1 such that:

(B1 r {x}) [ {y} 2 B

Proof . See [16], Lemma 1.2.2; pag 17.
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Theorem 2.61. Let E be a set and B be a collection of subsets of E satisfying

(B1) and (B2). Let I be the collection of subsets of E that are contained in

some member of B. Then (E, I) is a matroid having B as its collection of

bases.

Proof . See [16], Theorem 1.2.3; pag 17.

Corollary 2.62. Let B a set of subsets of a set E. Then B is the collection

of bases of a matroid on E if and only if it satisfies (B1)-(B2).

Definition 2.63. Let M be the matroid (E, I) and suppose that X ✓ E.

Define:

I|X = {A ✓ X : A 2 I}.

Then it is easy to see that the pair (E, I|X) is a matroid. We call this

matroid the restriction of M to X. It is denoted by M |X.

As M |X is a matroid, Lemma 2.59 implies that all its bases are equicardinal.

We define the rank rk(X) of X to be the size of a basis B of M |X.

It is clear that rk has the following properties:

(R1) If X ✓ E, then rk(X) 6 |X|.

(R2) If X ✓ Y ✓ E, then rk(X) 6 rk(Y ).

Lemma 2.64. The rank function rk of a matroid M on a set E satisfies the

following condition:

(R3) If X and Y are subsets of E, then:

rk(X [ Y ) + rk(X \ Y ) 6 rk(X) + rk(Y ).

Proof . See [16], Lemma 1.3.1; pag 23.

Theorem 2.65. Let E be a set and rk be a function that maps 2E into the

set of non-negative integers and satisfies (R1)-(R3). Let I be the collection

of subsets X of E for which rk(X) = |X|. Then (E, I) is a matroid having

rank function rk.
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Proof . See [16], Theorem 1.3.2; pag 23.

Corollary 2.66. Let E be a set. A function

rk : 2E �! Z+

is the rank function of a matroid on E if and only if rk satisfies (R1)-(R3).

Independent sets, bases and circuits are easily characterized in terms of

the rank function:

Proposition 2.67. Let M be a matroid with rank function rk and suppose

that X ✓ E(M). Then:

i) X is independent if and only if |X| = rk(X)

ii) X is a basis if and only if |X| = rk(X) = rk(M)

iii) X is a circuit if and only if X is non-empty and, for all x 2 X,

rk(X r {x}) = |X|� 1 = rk(X)

Definition 2.68. Let M be an arbitrary matroid having ground set E and

rank function rk. Let cl be the function from 2E into 2E defined for all

X ✓ E, by

cl(X) =
�

x 2 E : rk(X [ {x}) = rk(X)
 

.

This function is called the closure operator of M .

Lemma 2.69. The closure operator of a matroid on the set E has the fol-

lowing properties:

(CL1) If X ✓ E, then X ✓ cl(X)

(CL2) If X ✓ Y ✓ E, then cl(X) ✓ cl(Y )

(CL3) If X ✓ E, then cl(cl(X)) = cl(X)

(CL4) If X ✓ E, x 2 E, and y 2 (cl(X [ {x})r cl(X)), then x 2 cl(X [ {y})
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Proof . See [16], Lemma 1.4.2; pag 28.

Theorem 2.70. Let E be a set and cl be a function from 2E into 2E satisfying

(CL1)-(CL4). Let

I = {X ✓ E : x /2 cl(X r {x}) for all x 2 X}

Then (E, I) is a matroid having closure operator cl.

Proof . See [16], Theorem 1.4.4; pag 29.

Corollary 2.71. Let E be a set. A function

cl : 2E �! 2E

is the closure operator of a matroid on E if and only if it satisfies (CL1)-

(CL4).

Definition 2.72. If M is a matroid and X ✓ E(M), we call cl(X) the

closure of X in M . If X = cl(X), then X is called a flat of M . A hyperplane

of M is a flat of rank (rk(M)� 1).

2.2.3 Duality

In this subsection we define the dual of a matroid.

Theorem 2.73. Let M be a matroid and define

B⇤ = {E(M)r B : B 2 B(M)}.

Then B⇤ is the set of bases of a matroid on E(M). This matroid is called

dual matroid and is denoted by M⇤.

Proof . See [16], Theorem 2.1.1; pag 68.

The bases of M⇤ are called cobases of M . A similar convention ap-

plies to other distinguished subsets of E(M⇤). Hence, for example, the

circuits, hyperplanes, independent set of M⇤ are called cocircuits, cohyper-

planes, coindipendent sets of M .
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Remark. If � is a planar graph, and �⇤ is its dual, then:

M(�⇤) = M⇤(�).

If � is not planar, then the dual graph is not defined, but we still have a dual

matroid M⇤(�).

In general, we attach an asterisk to a symbol to denote association with

the dual. Thus, for example, rk⇤ will denote the rank function of M⇤ while

C⇤ denotes its set of circuits. Evidently:

rk(M) + rk⇤(M) = |E(M)| (2.2)

The next result generalizes Equation (2.2) to give a formula for rk⇤, the

corank function of M .

Lemma 2.74. Let M = (E, I) be a matroid and M⇤ = (E, I⇤) its dual. Let

A be a subset of the ground set E, then:

rk⇤(A) = rk(Ac) + |A|� rk(E)

Proof . See [16], Proposition 2.1.9; pag 72.

2.2.4 Lattice of flats

We now examine more closely the structure of the set of flats of a matroid.

We shall need some more terminology.

Definition 2.75. A partially ordered set (POSET) is a set X taken together

with a partial order on it. Formally, a partially ordered set is defined as an

ordered pair P = (X,6) where X is called the ground set of P and 6 the

partial order of P .

Definition 2.76. Given two posets (S,6S) and (T,6T ), an order isomor-

phism from (S,6S) to (T,6T ) is a bijective function f from S to T with the

property that, for every x, y 2 S:

x 6S y () f(x) 6T f(y).

An order isomorphism from a poset to itself is called order automorphism.
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An upper-bound of a subset X of a poset P is an element a 2 P such that

a > x, 8x 2 X. An upper-bound b of a subset X is called least upper-bound

(join) if for all upper bounds z of X in P , z > b.

The notions of lower bound of X and greatest lower bound (meet) of X are

defined dually.

Definition 2.77. In a poset P an element p covers an element q when @z 2 P

such that:

q < z < p.

An atom in P is an element that covers a minimal element b0.

A coatom in P is an element that is covered by a maximal element b1.

Definition 2.78. A lattice is a poset for which any two elements x and y

have a least upper-bound (join) x_ y and greatest lower bound (meet) x^ y.

A finite lattice is semi-modular if whenever x and y cover x ^ y (i.e, @z
such that x ^ y < z < x or x ^ y < z < y), then x _ y covers both x and y.

A finite lattice is geometric if it is semimodular and every element is a join

of atoms (elements covering b0).

Definition 2.79. The Möbius function µ of a finite lattice L is a function of

two lattice-variables which for all x, y 2 L satisfies the following properties:

µ(x, y) =

8

>

>

>

<

>

>

>

:

1, if x = y

�
P

x6z<y µ(x, z), if x < y

0, if x ⌦ y

We now introduce a poset that will be fundamental for the work of this

thesis.

Definition 2.80. Let ⇧n denote the poset of all partitions of [n], ordered by

refinement. Thus the elements of ⇧n are sets:

� = {B1, . . . , Bk}
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where the Bi’s are pairwise-disjoint non empty subsets of [n] with union [n].

Moreover:

{B0
1, . . . , B

0
j} 6 {B1, . . . , Bk}

if and only if every B0
r is contained in some Bs.

Example 13. Let ⇧3 be the partition lattice of {1, 2, 3}, then:

⇧3 = {1|2|3, 12|3, 13|2, 23|1, 123}

The maximal chains are:

a1 = 1|2|3 6 12|3 6 123 a2 = 1|2|3 6 13|2 6 123 a3 = 1|2|3 6 23|1 6 123

Theorem 2.81. ⇧n is a geometric lattice of rank n� 1.

Proof . See [3], Theorem 12; pag 95.

If M is a matroid, then L(M) will denote the poset of flats of M ordered

by inclusion (L(M),✓).

Lemma 2.82. (L(M),✓) is a geometric lattice and, for all flats X and Y

of M , we have:

X ^ Y = X \ Y X _ Y = cl(X [ Y )

Proof . See [16], Lemma 1.7.3 and Theorem 1.7.5 ; pag 54/55.

2.2.5 Lattice of flats of the complete graph Kn

Let Kn be the complete graph on n vertices.

A particularly important example of geometric lattice is the lattice of flats of

the matroid M(Kn). Let V be the vertex set of Kn. If F is a flat of M(Kn),

we denote by ⇡F the partition of V in which i and j are in the same partition

if and only if the edge ij is in F . Conversely, if � 2 ⇧n we denote by F� the

flat of M(Kn) in which the edge ij is in F� if and only if i and j are in the

same partition of �.
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This determines a map from the set L(M(Kn)) of flats of M(Kn) and the

partition lattice ⇧n of the n-set V :

� : L(M(Kn)) �! ⇧n

F 7�! ⇡F

Moreover, � is easily shown to be an order isomorphism. For F1, F2 2
L(M(Kn)) we have:

F1 ✓ F2 () ⇡F1 6 ⇡F2

where 6 indicates the order relationship introduced in Definition 2.80. Let’s

see an example:

Example 14. Consider K3:

Figure 2.4

Let M(K3) be the matroid associated to the graph K3 with:

E = {a, b, c} I = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}

L(M(K3)) = {;, {a}, {b}, {c}, {a, b, c}}

In this case the order isomorphism between L(M(K3)) and ⇧3 is the follow-
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ing:

� : L(M(K3)) �! ⇧3

; 7�! 1|2|3
{a} 7�! 12|3
{b} 7�! 23|1
{c} 7�! 13|1

{a, b, c} 7�! 123

2.2.6 Isomorphism between M(�+(An�1), I) and M(Kn)

Due to the construction described in Section 1.1.2 we have:

�+(An�1) = {ei � ej | i < j}

where {e1, . . . , en} is the canonical basis of Rn. We also have that:

|�+(An�1)| =
✓

n� 1 + 1

2

◆

=
n(n� 1)

2

We form a matrix A by placing each element of �+(An�1) as a column of A:

M(�+(An�1), I) = M [A]

Let Kn be the complete graph on n vertices. We call E(Kn) the set of

edges of Kn. Recall that the number of edges in Kn is:

|E(Kn)| =
n(n� 1)

2
.

We label the vertices of Kn with {1, . . . , n} and we give a direction to each

edge of Kn in the following way: if e 2 E(Kn) then there exist unique

i, j 2 {1, . . . , n} such that e = ij. If i < j let’s make i the tail of the edge

e and j its head. In this way we have formed a directed graph D(Kn). By

construction, up to a permutation of columns, we have that:

A = AD(Kn).

By Proposition 2.57 we have that:

M(Kn) = M [AD(Kn)].
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Combining the last two results we have that:

M(�+(An�1), I) = M(Kn).

Example 15. If we consider A3 embedded in R4 we claim that:

�+(A3) = {↵1,↵2,↵3,↵1 + ↵2,↵2 + ↵3,↵1 + ↵2 + ↵3} =

=

(
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A =

0

B

B

B

B

@

1 0 0 1 0 0

-1 1 0 0 1 0

0 -1 1 -1 0 0

0 0 -1 0 -1 -1

1

C

C

C

C

A

We now considerK4, label the vertices by {1, 2, 3, 4} and form the directed

graph D(K4) with the orientation discussed before:

Figure 2.5: D(K4)
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AD(K4) =

0

B

B

B

B

@

1 0 0 1 0 0

-1 1 0 0 1 1

0 -1 1 0 0 0

0 0 -1 -1 -1 -1

1

C

C

C

C

A

We note that if we permute the fourth with the sixth column we obtain

exactly the matrix A, then we have:

M [A] = M [AD(K4)]

2.2.7 The Sn-action on the vertices of Kn

The Weyl group of An�1 acts on �An�1 by permuting the coordinates of

its elements.

We have already seen in Subsection 1.1.2 that each � 2 Sn induces a

permutation ⌧� on �+
An�1

given by considering the action of the Weyl group

without the sign. The map ⌧� is a permutation of E(M(�+
An�1

)) = �+(An�1),

the ground set of the matroid M(�+
An�1

, I).

Equivalently, in the case of the complete graph Kn, a vertex permutation

� induces a permutation on the edges ⌧�. The map ⌧� is a permutation of

E(M(Kn)) = E(Kn), the ground set of M(Kn) where E(Kn) is the set of

edges of Kn.

If we want to think of the vector matroid M [AD(Kn)] associated with the

complete graph Kn, we see that it is exactly the same as what we saw above

with An�1: a permutation of vertices �, which coincides with a permutation

of coordinates (rows of the matrix), induces a permutation ⌧� of the columns

of the matrix without considering the sign of the column vectors. Two col-

umn vectors that di↵er from the sign correspond to the same edge considered

with di↵erent direction.
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We now consider for simplicity M(�+
An�1

, I); some considerations can be

expressed in terms of the isomorphic matroid M(Kn).

Considering IN(M(�+
An�1

)) as an abstract simplicial complex we have that

⌧� is a vertex map:

⌧� : E(M(�+
An�1

)) �! E(M(�+
An�1

))

The map ⌧� also induces a simplicial map '⌧� : since ⌧� is an element of

the Weyl group acting on �+
An�1

without considering the sign, we have that

a set of linearly independent vectors is mapped into a set of linearly inde-

pendent vectors of the same cardinality. This implies that ⌧� satisfies the

hypotheses of Lemma 2.8 and therefore induces a simplicial map '⌧� from

|IN(M(�+
An�1

))| to itself. Since ⌧� is a bijective map, Lemma 2.9 implies

that the simplicial map '⌧� is a simplicial homeomorphism.

We now consider M⇤(�+
An�1

, I), the dual matroid of M(�+
An�1

, I), it has

the same ground set of M(�+
An�1

, I), and therefore ⌧� is also a vertex map of

IN(M⇤(�+
An�1

)).

Since the ⌧�-action permutes the bases of M(�+
An�1

, I), it will also permutes

the bases of M⇤(�+
An�1

, I) and therefore ⌧� satisfies the hypothesis of Lemma

2.9 and induces a simplicial map '0
⌧� from |IN(M⇤(�+

An�1
)| to itself.

From now on we denote IN(M⇤(�+
An�1

) = IN(M⇤(An�1)).

As seen in Subsection 2.1.6 the map '0
⌧� induces a linear map '0

⌧�⇤ on
eHp(IN(M⇤(An�1))),C):

'0
⌧�⇤ :

eHp(IN(M⇤(An�1));C) �! eHp(IN(M⇤(An�1));C).

Working with complex coe�cients the eHp(IN(M⇤(An�1))) are C-vector spaces.

We can therefore study the following representations:
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⇢p : W ' Sn �! GL( eHp(IN(M⇤(An�1)))

� 7�! '0
⌧�⇤

In particular we are interested in the study of representations on the top

homology spaces. Let

|E| = |E(M⇤(An�1))| = |�+(An�1)| =
n(n� 1)

2

be the cardinality of the vertex set of IN(M⇤(An�1)); in any matroid the

top homology space is the (k � 1)-th where k is the cardinality of a basis.

Therefore in IN(M⇤(An�1)) the cardinality of a basis is |E| � (n � 1) and

then

|E|� (n� 1)� 1 = |E|� n.

Therefore the top homology group is the (|E|� n)-th. Hence:

⇢|E|�n : Sn �! GL( eH|E|�n(IN(M⇤(An�1)))

� 7�! '0
⌧�⇤

Due to the equivalence seen in Subsection 2.2.6, the above representations

coincide with the representations on the top homology of the dual matroid

of the complete graph Kn, i.e.

⇢|E|�n : Sn �! GL( eH|E|�n(IN(M⇤(Kn)))

� 7�! '0
⌧�⇤

The purpose of this thesis is to study the above representations.

Example 16. Let us consider M⇤(�+
A3
, I) = M(K4) and let us explicitly

calculate the representations we want to study. Our purpose is to find the

following representation:

⇢2 : S4 �! GL( eH2(IN(M⇤(A3)))

We have:

E(M⇤) = �+
A3

= {↵1,↵2,↵3,↵1+↵2,↵2+↵3,↵1+↵2+↵3} = {v1, v2, v3, v4, v5, v6}
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First we calculate the bases of the matroid M(�+
A3
, I):

BM =
n

{↵1,↵2,↵3}, {↵1,↵2,↵2+↵3}, {↵1,↵2,↵1+↵2+↵3}, {↵1,↵1+↵2,↵3},

{↵1,↵1 + ↵2,↵2 + ↵3}, {↵1,↵1 + ↵2,↵1 + ↵2 + ↵3}, {↵2,↵1 + ↵2,↵3},

{↵2,↵1 + ↵2,↵2 + ↵3}, {↵2,↵1 + ↵2,↵1 + ↵2 + ↵3}, {↵3,↵2,↵1 + ↵2 + ↵3},

{↵3,↵2 + ↵3,↵1}, {↵3,↵2 + ↵3,↵1 + ↵2}, {↵3,↵2 + ↵3,↵1 + ↵2 + ↵3},

{↵1,↵3,↵1+↵2+↵3}, {↵1+↵2,↵2+↵3,↵1+↵2+↵3}, {↵2,↵2+↵3,↵1+↵2+↵3}
o

Now we calculate the bases of the dual matroid M⇤(�+
A3
, I):

BM⇤ =
n

{↵1+↵2,↵2+↵3,↵1+↵2+↵3}, {↵3,↵1+↵2,↵1+↵2+↵3}, {↵3,↵1+↵2,↵2+↵3},

{↵2,↵2 + ↵3,↵1 + ↵2 + ↵3}, {↵2,↵3,↵1 + ↵2 + ↵3}, {↵2,↵3,↵2 + ↵3},

{↵1,↵2+↵3,↵1+↵2+↵3}, {↵1,↵3,↵1+↵2+↵3}, {↵1,↵3,↵2+↵3}, {↵1,↵1+↵2,↵2+↵3}

{↵2,↵1 + ↵2,↵1 + ↵2 + ↵3}, {↵1,↵2,↵1 + ↵2 + ↵3}, {↵1,↵2,↵1 + ↵2},

{↵2,↵1 + ↵2,↵2 + ↵3}, {↵1,↵2,↵3}, {↵1,↵3,↵1 + ↵2}
o

The independence set I of M⇤ is composed of all the sets above together

with all their subsets. Let’s calculate the bases of the two free-modules C2

and C1. As for C2 we just need to order the simplices:

BC2 =
n a1

[v4, v5, v6],
a2

[v3, v4, v6],
a3

[v3, v4, v5],
a4

[v2, v5, v6],
a5

[v2, v3, v6],
a6

[v2, v3, v5]

a7

[v1, v5, v6],
a8

[v1, v3, v6],
a9

[v1, v3, v5],
a10

[v1, v4, v5],
a11

[v2, v4, v6],
a12

[v1, v2, v6],
a13

[v1, v2, v4],
a14

[v2, v4, v5],
a15

[v1, v2, v3],
a16

[v1, v3, v4]
o

= {a1, a2, . . . , a16}

BC1 =
n

[v1, v2], [v1, v3], [v1, v4], [v1, v5], [v1, v6, [v2, v3], [v2, v4], [v2, v5],

[v2, v6], [v3, v4], [v3, v5], [v3, v6], [v4, v5], [v4, v6], [v5, v6]
o

C2 ' C16 C1 ' C15
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0
@3�! C2

@2�! C1
eH2(IN(M⇤(A3))) = ker(@2)/Im(@3) = ker(@2)

@2 =

0

B

B

B
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1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

-1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

eH2(IN(M⇤(A3))) = Span
n b1
�a1 � a2 + a4 � a5 + a6 � a9 + a10 + a16;�

b2
a5 + a8 � a12 + a15;

b3
�a1 + a4 � a11 + a14;

b4
�a1 + a4 � a5 + a6 + a8 � a9 + a10 � a11 � a12 + a13;

b5
�a4 + a5 � a6 + a7 � a8 + a9;

b6
�a1 � a2 + a3 + a4 � a5 + a6

o

=

= {b1, b2, b3, b4, b5, b6}

Every � induces a permutation ⌧� on the vertex set. For example:

⌧(12) : C0 �! C0

v1 7�! v1

v2 7�! v6

v3 7�! v3

v4 7�! v5

v5 7�! v4

v6 7�! v2

⌧(12)(34) : C0 �! C0

v1 7�! v1

v2 7�! v4

v3 7�! v3

v4 7�! v2

v5 7�! v6

v6 7�! v5
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These ⌧� induce linear maps on C2. In order to calculate ⇢2 we need to

see how the representation on C2 works (See Subsection 2.1.6):

↵⌧ : S4 �! GL(C2)

(12) 7�! ↵(12)

(123) 7�! ↵(123)

(1234) 7�! ↵(1234)

(12)(34) 7�! ↵(12)(34)

↵(12)(a1) = �a4 ↵(12)(a2) = �a6 ↵(12)(a3) = �a5 ↵(12)(a4) = �a1 ↵(12)(a5) = �a3

↵(12)(a6) = �a2 ↵(12)(a7) = �a7 ↵(12)(a8) = a9 ↵(12)(a9) = a8 ↵(12)(a10) = a12

↵(12)(a11) = �a14 ↵(12)(a12) = a10 ↵(12)(a13) = �a13 ↵(12)(a14) = �a11

↵(12)(a15) = �a16 ↵(12)(a16) = �a15

↵(123)(a1) = a9 ↵(123)(a2) = a7 ↵(123)(a3) = a8 ↵(123)(a4) = �a3 ↵(123)(a5) = �a1

↵(123)(a6) = a2 ↵(123)(a7) = a6 ↵(123)(a8) = �a4 ↵(123)(a9) = �a5

↵(123)(a10) = �a15 ↵(123)(a11) = �a10 ↵(123)(a12) = a14 ↵(123)(a13) = a13

↵(123)(a14) = a16 ↵(123)(a15) = a11 ↵(123)(a16) = a12

↵(1234)(a1) = �a10 ↵(1234)(a2) = �a7 ↵(1234)(a3) = �a1 ↵(1234)(a4) = a16

↵(1234)(a5) = a8 ↵(1234)(a6) = �a2 ↵(1234)(a7) = a13 ↵(1234)(a8) = a12

↵(1234)(a9) = �a11 ↵(1234)(a10) = �a14 ↵(1234)(a11) = a9 ↵(1234)(a12) = a15

↵(1234)(a13) = a6 ↵(1234)(a14) = �a3 ↵(1234)(a15) = a5 ↵(1234)(a16) = �a4

↵(12)(34)(a1) = �a14 ↵(12)(34)(a2) = a6 ↵(12)(34)(a3) = �a3 ↵(12)(34)(a4) = �a11
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↵(12)(34)(a5) = �a5 ↵(12)(34)(a6) = a2 ↵(12)(34)(a7) = �a13 ↵(12)(34)(a8) = �a15

↵(12)(34)(a9) = a16 ↵(12)(34)(a10) = �a10 ↵(12)(34)(a11) = �a4 ↵(12)(34)(a12) = �a12

↵(12)(34)(a13) = �a7 ↵(12)(34)(a14) = �a1 ↵(12)(34)(a15) = �a8 ↵(12)(34)(a16) = a9

⇢2 : S4 �! GL( eH2(IN(M⇤(A3))))

Id 7�! I6

(12) 7�! ⇢(12)

(123) 7�! ⇢(123)

(1234) 7�! ⇢(1234)

(12)(34) 7�! ⇢(12)(34)

⇢(12) : eH2(IN(M⇤(A3))) �! eH2(IN(M⇤(A3)))

b1 7�! -b2 + b6

b2 7�! -b1 + b6

b3 7�! b3

b4 7�! b3-b4 + b6

b5 7�! -b5-b6

b6 7�! b6

⇢(12) =

0

B

B

B

B

B

B

B

B

B

B

@

0 -1 0 0 0 0

-1 0 0 0 0 0

0 0 1 1 0 0

0 0 0 -1 0 0

0 0 0 0 -1 0

1 1 0 1 -1 1

1

C

C

C

C

C

C

C

C

C

C

A
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⇢(123) : eH2(IN(M⇤(A3))) �! eH2(IN(M⇤(A3)))

b1 7�! -b2-b5-b6

b2 7�! -b3

b3 7�! b1-b6

b4 7�! -b2-b3 + b4-b6

b5 7�! b6

b6 7�! -b5-b6

⇢(123) =

0

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0 0

-1 0 0 -1 0 0

0 -1 0 -1 0 0

0 0 0 1 0 0

-1 0 0 0 0 -1

-1 0 -1 -1 1 -1

1

C

C

C

C

C

C

C

C

C

C

A

⇢(1234) : eH2(IN(M⇤(A3))) �! eH2(IN(M⇤(A3)))

b1 7�! b1-b3 + b5

b2 7�! -b2

b3 7�! b1-b6

b4 7�! b1-b2-b3

b5 7�! -b1 + b4

b6 7�! b1 + b5

⇢(1234) =

0

B

B

B

B

B

B

B

B

B

B

@

1 0 1 1 -1 1

0 -1 0 -1 0 0

-1 0 0 -1 0 0

0 0 0 0 1 0

1 0 0 0 0 1

0 0 -1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A



80 2. Preliminaries in Topology and Combinatorics

⇢(12)(34) : eH2(IN(M⇤(A3))) �! eH2(IN(M⇤(A3)))

b1 7�! -b1 + b3

b2 7�! -b2

b3 7�! b3

b4 7�! -b1-b2 + b3-b5

b5 7�! b1 + b2-b4

b6 7�! -b6

⇢(12)(34) =

0

B

B

B

B

B

B

B

B

B

B

@

-1 0 0 -1 1 0

0 -1 0 -1 1 0

1 0 1 1 0 0

0 0 0 0 -1 0

0 0 0 -1 0 0

0 0 0 0 0 -1

1

C

C

C

C

C

C

C

C

C

C

A

�⇢2 : S4 �! C
Id 7�! 6

(12) 7�! 0

(123) 7�! 0

(1234) 7�! 0

(12)(34) 7�! �2

Comparing this result with Example 5 we note that the representation ⇢2 we

found is isomorphic to IndS4
C4
(i).

In the next two chapters we will generalize this result.



Chapter 3

Representations on the

homology of the partition

lattice

3.1 On the homology of a poset

Let P be a finite poset. A chain is a totally ordered subset of a poset P .

The length of a finite chain C is

l(C) = |C|� 1

We assume that P has a unique minimal element b0, a unique maximal element

b1 and that every maximal chain has the same length n.

Define the rank function:

r : P �! [n] = {1, 2, . . . , n}

by setting r(x) equal to the length of any saturated chain in the interval
⇥

b0, x
⇤

= {y | b0 6 y 6 x}.

Definition 3.1. If S ✓ [n�1] = {1, 2, . . . , n�1} then define the rank-selected

subposet PS of P by:

PS = {x 2 P | r(x) 2 S} [ {b0,b1}

81
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Example 17. P4 = (2{1,2,3,4},✓), if we take S = {1, 2} we obtain:

Figure 3.1: PS subposet of P

Definition 3.2. Let Q be any poset with b0 and b1, then define the order

complex �(Q) to be the abstract simplicial complex whose vertices are the

elements of Q = Qr
�

b0,b1
 

and whose faces (or simplices) are the chains

x0 < x1 < · · · < xk in Qr
�

b0,b1
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Denote by eHi(Q) the reduced simplicial homology group eHi(�(Q),C).
Recall that for any simplicial complex �, eH�1(�,C) = 0 unless � = ;,
while by definition eH�1(;,C) ' C and eH�1(;,C) = 0 for i > 0.

Now suppose G is a group of order automorphism of P (see Definition

2.76). For any S ✓ [n� 1] G permutes the maximal chain of PS. Let CS be

the free module over C on the set of maximal chains of PS:

CS = ha1, . . . , ari ai maximal chains of PS

Let ↵P
S denote the permutation representation of G on CS:

↵P
S : G �! GL(CS)

g 7�! ↵g : CS �! CS

Example 18. Consider as before P4 = ({1, 2, 3, 4},✓), this time however

with S = {1} ✓ [3]:

PS = P4S = {;, {1, 2, 3, 4}, {1}, {2}, {3}, {4}}

The maximal chains of PS are:

a1 = ; ✓ {1} ✓ {1, 2, 3, 4} a2 = ; ✓ {2} ✓ {1, 2, 3, 4}

a3 = ; ✓ {3} ✓ {1, 2, 3, 4} a4 = ; ✓ {4} ✓ {1, 2, 3, 4}

Let CS be the free-module over C having {a1, a2, a3, a4} as basis:

CS = {�1a1 + �2a2 + �3a3 + �4a4; �i 2 C}

G is a group of order automorphisms of P4, so G is a subgroup ofS4. Suppose

G = S4.

↵P
S : S4 �! GL(CS)

(123) 7�! ↵(123)

(34) 7�! ↵(34)
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↵(123) : CS �! CS

a1 7�! a2

a2 7�! a3

a3 7�! a1

a4 7�! a4

↵(123) =

0

B

B

B

B

@

0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

1

C

C

C

C

A

↵(34) : CS �! CS

a1 7�! a1

a2 7�! a2

a3 7�! a4

a4 7�! a3

↵(34) =

0

B

B

B

B

@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1

C

C

C

C

A

�↵P
S
((123)) = 1 Number of maximal chains fixed by (123)

�↵P
S
((34)) = 2 Number of maximal chains fixed by (34)

As we have seen in the previous example, �↵P
S
((g)) is the number of

maximal chains of PS fixed by g. In particular, �↵P
S
((Id)) is just the number

of maximal chains of PS.

G also acts on each reduced homology group eHi(PS) with �1 6 i 6 |S|� 1

(see Lemma 2.9 and Subsection 2.1.6).

Let �S,i denote this representation of G:

�S,i : G �! GL( eHi(PS))

Now define a virtual representation �S = �P
S of G by:

�S =
|S|�1
X

i=�1

(�1)|S|�1�i �S,i (3.1)

In particular, when S = ; then �S is the trivial representation, i.e

�S(g) = Id 8g 2 G.
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Example 19. Consider P3 = (2{1,2,3},✓) and S = [2]. In this case we have

that PS = P3.

To calculate the homology of P3 we have to consider P3 and his order com-

plex:

Observing the order complex of P3 we immediately notice that:

eHi(P3) = 0;�1 6 i 6 0 and eH1(P3) ' C

We explicitly calculate eH1(P3) to see the action of the group on it.

The vertex set of �(P3) is {v1, . . . , v6}. The 1-chains of P3 are:

a1 = [v1, v4] a2 = [v1, v5] a3 = [v2, v4]

a4 = [v2, v6] a5 = [v3, v5] a6 = [v3, v6]

Hence:

C0 =
n

6
X

i=1

�ivi, �i 2 C
o

C1 =
n

6
X

i=1

�iai, �i 2 C
o

C2 = 0

C2
@2�! C1

@1�! C0
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@1 : C1 �! C0

a1 7�! v4 � v1

a2 7�! v5 � v1

a3 7�! v4 � v2

a4 7�! v6 � v2

a5 7�! v5 � v3

a6 7�! v6 � v3

@1 =

0

B

B

B

B

B

B

B

B

B

B

@

�1 �1 0 0 0 0

0 0 �1 �1 0 0

0 0 0 0 �1 �1
1 0 1 0 0 0

0 1 0 0 1 0

0 0 0 1 0 1

1

C

C

C

C

C

C

C

C

C

C

A

eH1(P3) = ker(@1)/Im(@2) = ker(@1) ker(@1) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

x1 = �t

x2 = t

x3 = t

x4 = �t

x5 = �t

x6 = t

eH1(P3) = Span{�[v1, v4] + [v1, v5] + [v2, v4]� [v2, v6]� [v3, v5] + [v3, v6]
| {z }

l

}

Let G be a group of order automorphism of P3, so G is a subgroup of S3.

Suppose G = S3 and let’s calculate �[2],1:

�[2],1 : S3 �! GL( eH1(P3))

Id 7�! �
Id

(12) 7�! �(12)

(123) 7�! �(123)

�
Id

: eH1(P3) �! eH1(P3)

l 7�! l

�(12) : eH1(P3) �! eH1(P3)

l 7�! �l

�(123) : eH1(P3) �! eH1(P3)

l 7�! l
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�[2],1 is isomorphic to the sign representation:

⇢ : S3 �! C⇤

g 7�! sgn(g)

And in this case we have �[2] = �[2],1.

To be able to enunciate the next theorem we need two results due to

Baclawsky and Björner; we begin by setting some notation.

Definition 3.3. Given a poset P and a order automorphism f , we write P f

for the fixed point set :

P f = {x 2 P | x = f(x)}

Definition 3.4. Let P be a poset and let ✏i(P ) be the number of i-chains of

P = P r {b0,b1}. The Euler-characteristic E(P ) is defined by:

E(P ) =
+1
X

i=0

(�1)i ✏i(P )

In particular E(;) = 0.

The well known Euler-Poincaré formula states that

E(P ) =
+1
X

n=0

(�1)n dimCHn(P,C)

We can also introduce the definition of reduced Euler characteristic:

eE(P ) =
+1
X

n=�1

(�1)n dimC eHn(P,C)

It is easy to see that:

E(P ) = eE(P ) + 1

It is a theorem of P. Hall ([17], Prop 6, pag. 346) that:

E(P ) = µ(P ) + 1, i.e. eE(P ) = µ(P ) (3.2)

with µ(P ) = µ
�

b0,b1
�

the Möbius function of P .
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Definition 3.5 (Lefschetz Number). Let P be a finite poset. For an order

automorphism f of P let:

fn : Hn(P,C) �! Hn(P,C) efn : eHn(P,C) �! eHn(P,C)

be the linear maps which are induced on homology and reduced homology

respectively. The Lefschetz number of f is:

⇤(f) =
+1
X

n=0

(�1)n Tr(fn)

and the reduced Lefschetz number of f is:

e⇤(f) =
+1
X

n=�1

(�1)n Tr( efn)

Theorem 3.6 (Hopf-Lefschetz fixed point theorem). Let P be a finite poset

and let f be an order automorphism of P . Then:

⇤(f) = E(P f ) e⇤(f) = eE(P f )

In particular, if ⇤(f) 6= 0, then P f 6= ;.

Proof . See [2], Theorem 1.1; pag. 265.

The result is stated for ordinary simplicial homology, but the proof works

just as well for reduced simplicial homology.

Now we can state the following theorem:

Theorem 3.7. The representation ↵S and the virtual representation �S are

related by the formulas:

↵S =
X

T✓S

�T (3.3)

�S =
X

T✓S

(�1)|SrT | ↵T (3.4)
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Proof . Let P be a finite poset and let G be a group of order automorphism

of P . Let e⇤S(g) be the Lefschetz number of the map g 2 G working in PS

subposet of P :

e⇤S(g) =
+1
X

n=�1

(�1)n Tr(egn) egn : eHn(PS,C) �! eHn(PS,C)

Recall that:

�S =
|S|�1
X

n=�1

(�1)|S|�1�n �S,n
�S,n : G �! GL( eHn(PS))

g 7�! egn

The character of the virtual representation �S is:

��S(g) =
|S|�1
X

n=�1

(�1)|S|�1�n ��S,n(g) =
|S|�1
X

n=�1

(�1)|S|�1�n Tr(egn) =

=
|S|�1
X

n=�1

(�1)|S|�1 (�1)�n Tr(egn) = (�1)1�|S|
|S|�1
X

n=�1

(�1)n Tr(egn)

Since eHn(PS,C) = 0 for all n > |S|� 1, we have that:

e⇤S(g) =
|S|�1
X

n=�1

(�1)n Tr(egn)

But as far as we see before we get:

��S(g) = (�1)1�|S|
e⇤S(g) e⇤S(g) = (�1)|S|�1 ��S(g) (3.5)

Let eE(P g
S) be the reduced Euler-characteristic of the subposet P g

S of PS. By

applying Theorem 3.6 to the poset PS we have that:

e⇤S(g) = eE(P g
S) (3.6)

By definition of the Euler characteristic, recalling that �↵S(g) is the number

of maximal chains of PS fixed by g, we claim that:

eE(P g
S) =

X

T✓S

(�1)|T |�1 �↵T (g)
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Hence for (3.6):

(�1)|S|�1 ��S(g) =
X

T✓S

(�1)|T |�1 �↵T (g)

��S(g) =
X

T✓S

(�1)|T |�|S| �↵T (g) =
X

T✓S

(�1)|SrT | �↵T (g)

for all g 2 G, so Equation (3.4) follows. For obtaining Equation (3.3), it

su�ces to apply the Inclusion-Exclusion principle.

Example 20. Consider P3 = (2{1,2,3},✓). We want to calculate explicitly

�S with the new characterization provided by Theorem 3.7 and compare the

result with that of the previous example. Since length(P ) = 3, we take

S = {1, 2} ✓ [2].

In this case we have that PS = P3. We want to calculate:

�[2] =
X

T✓[2]

(�1)|[2]rT | ↵T

i) For the first element of the sum let us consider T = S = [2].

The maximal chains of PS are:

a1 = ; ✓ {1} ✓ {1, 2} ✓ {1, 2, 3} a2 = ; ✓ {1} ✓ {1, 3} ✓ {1, 2, 3}

a3 = ; ✓ {2} ✓ {1, 2} ✓ {1, 2, 3} a4 = ; ✓ {2} ✓ {2, 3} ✓ {1, 2, 3}

a5 = ; ✓ {3} ✓ {1, 3} ✓ {1, 2, 3} a6 = ; ✓ {3} ✓ {2, 3} ✓ {1, 2, 3}

Let CS be the free-module over C with {a1, a2, a3, a4, a5, a6} as basis:

CS = {�1a1 + �2a2 + �3a3 + �4a4 + �5a5 + �6a6; �i 2 C}

Suppose G = S3.

↵S : S3 �! GL(CS)

Id 7�! I6

(12) 7�! ↵S
(12)

(123) 7�! ↵S
(123)
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↵S
(12) : CS �! CS

a1 7�! a3

a2 7�! a4

a3 7�! a1

a4 7�! a2

a5 7�! a6

a6 7�! a5

↵S
(12) =

0

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

1

C

C

C

C

C

C

C

C

C

C

A

↵S
(123) : CS �! CS

a1 7�! a4

a2 7�! a3

a3 7�! a6

a4 7�! a5

a5 7�! a1

a6 7�! a2

↵S
(123) =

0

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

It turns out that ↵S is the regular representation of S3.

ii) We now consider T = T1 = ; ✓ S.

The only maximal chain of PT1 is:

b1 = ; ✓ {1, 2, 3}

Let CT1 be the free-module over C with {b1} as basis:

CT1 = {�1b1; �i 2 C}
↵T1 : S3 �! GL(CT1)

g 7�! 1

iii) Let T = T2 = {1} ✓ S.

The maximal chains of PT2 are:

c1 = ; ✓ {1} ✓ {1, 2, 3} c2 = ; ✓ {2} ✓ {1, 2, 3} c3 = ; ✓ {3} ✓ {1, 2, 3}
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Let CT2 be the free-module over C with {c1, c2, c3} as basis:

CT2 = {�1c1 + �2c2 + �3c3; �i 2 C}

↵T2 : S3 �! GL(CT2)

Id 7�! I3

(12) 7�! ↵T2
(12)

(123) 7�! ↵T2
(123)

↵T2
(12) : CT2 �! CT2

c1 7�! c2

c2 7�! c1

c3 7�! c3

↵T2
(12) =

0

B

B

@

0 1 0

1 0 0

0 0 1

1

C

C

A

↵T2
(123) : CT2 �! CT2

c1 7�! c2

c2 7�! c3

c3 7�! c1

↵T2
(123) =

0

B

B

@

0 0 1

1 0 0

0 1 0

1

C

C

A

iv) Let T = T3 = {2} ✓ S.

The maximal chains of PT3 are:

d1 = ; ✓ {1, 2} ✓ {1, 2, 3} d2 = ; ✓ {1, 3} ✓ {1, 2, 3}

d3 = ; ✓ {2, 3} ✓ {1, 2, 3}

Let CT3 be the free-module over C with {d1, d2, d3} as basis:

CT3 = {�1d1 + �2d2 + �3d3; �i 2 C}

↵T3 : S3 �! GL(CT3)

Id 7�! I3

(12) 7�! ↵T3
(12)

(123) 7�! ↵T3
(123)
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↵T3
(12) : CT3 �! CT3

d1 7�! d1

d2 7�! d3

d3 7�! d2

↵T3
(12) =

0

B

B

@

1 0 0

0 0 1

0 1 0

1

C

C

A

↵T3
(123) : CT3 �! CT3

d1 7�! d3

d2 7�! d1

d3 7�! d2

↵T3
(123) =

0

B

B

@

0 1 0

0 0 0

1 0 0

1

C

C

A

Now we can calculate the character of the representation �[2]:

�[2] = +↵T1 � ↵T2 � ↵T3 + ↵S

��[2](Id) = �↵T1
(Id)� �↵T2

(Id)� �↵T3
(Id) + �↵S(Id) = 1� 3� 3 + 6 = 1

��[2]((12)) = 1� 1� 1 + 0 = �1

��[2]((123)) = 1� 0� 0 + 0 = 1

�[2] is isomorphic to the sign representation:

⇢ : S3 �! C⇤

g 7�! sgn(g)

The result is consistent with that of the previous example. In this case,

compute �[2] coincides with the calculation of �[2],1.

We try to generalize this result for some types of poset:

Definition 3.8. Define an arbitrary finite poset P with b0 and b1 to be Cohen-

Macaulay (over C) if for every interval I = [x, y] = {z : x 6 z 6 y} of P

we have:

eHi(I) = 0 whenever i 6= dim �(I)

Theorem 3.9. If P is a Cohen-Macaulay poset of rank n and if S ✓ [n�1],

then PS is also Cohen-Macaulay.
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Proof . See [1], Theorem 6.4; pag 247.

Let P be a Cohen-Macaulay poset with b0 and b1, it follows from (3.1),

that:

�S = �S,s�1 s = |S|

In other words:

Theorem 3.10. If P is a Cohen-Macaulay poset then �S is isomorphic to

the natural representation �S,s�1 of G on the top reduced homology group
eHs�1(PS).

3.2 On the homology of the partition lattice

⇧n

Let ⇧n denote the poset of all partitions of [n], ordered by refinement.

Proposition 3.11. Let µ be the Möbius function of the lattice of partitions

⇧n, then:

µ(b0,b1) = (�1)n�1 (n� 1)!

Proof . See [17], Proposition 3; pag 359.

Now we report a result due to Folkman which applies to any geometric

lattice:

Theorem 3.12. Let L be a geometric lattice of rank r and let µ denote the

Möbius function of L. Let F (k) denote the free C-module of dimension k.

Then:

eHi(L) '

8

<

:

F (|µ(b0,b1)|), if i = r � 2

0, if i 6= r � 2

Proof . See [9], Theorem 4.1; pag 634.
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From the previous theorem it follows that every geometric lattice L is a

Cohen-Macaulay poset and then the only non-zero reduced homology group

of L is the (r � 2)-th. Hence, ⇧n is a Cohen-Macaulay poset.

The symmetric group Sn acts as an order automorphism group on ⇧n by

permuting the letters of the partitions. For example, the transposition (12)

acting on the partition 13|2|4 yields the partition 23|1|4. Let’s see an example

of how (12) acts on a chain:

1|2|3|4 < 23|1|4 < 234|1 < 1234 7�! 1|2|3|4 < 13|2|4 < 134|2 < 1234

Our aim is to study the representation �n�3 of Sn on the top homology

group eHn�3(⇧n) of ⇧n .

If we take S = [n� 2], we obtain from Theorem 3.10:

(⇧n)S = {x 2 ⇧n | x = b0 _ x = b1 _ r(x) 2 S} = ⇧n

�S = �[n�2] =
n�3
X

i=�1

(�1)n�3�i �S,i = �S,n�3 = �n�3

So in the case of the partition lattice the representation we are looking for is

�[n�2] = �n�3:

�[n�2] = �n�3 : Sn �! GL( eHn�3(⇧n))

By Theorem 3.12 and Proposition 3.11 we have that:

dim( eHn�3(⇧n)) = |µ(b0,b1)| = |(�1)n�1 (n� 1)!| = (n� 1)!

Thus, �[n�2] is a representation of Sn of degree (n� 1)!.

Before describing �[n�2] more explicitly, let’s make an example:

Example 21. Consider the partition lattice ⇧4 of [4] with every maximal

chain of length 3 and with S = [2], we always consider S maximal since we

want that:

PS = P = ⇧4
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µ(⇧4) = µ(b0,b1) = �3! = �6 eH1(⇧4) ' C6

C1 ' C18 C0 ' C13

BC1 =
n a1

[v1, v7],
a2

[v1, v9],
a3

[v1, v12],
a4

[v2, v7],
a5

[v2, v8],
a6

[v2, v10],
a7

[v3, v7],
a8

[v3, v11],
a9

[v3, v13],

,
a10

[v4, v9],
a11

[v4, v10],
a12

[v4, v13],
a13

[v5, v10],
a14

[v5, v11],
a15

[v5, v12],
a16

[v6, v8],
a17

[v6, v9],
a18

[v6, v11]
o

BC0 =
n

v1, v2, . . . , v13
o

0
@2�! C1

@1�! C0
eH1(⇧4) = ker(@1)/Im(@2) = ker(@1)
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@1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

-1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

eH1(⇧4) = Span{
b1

�a4 + a5 + a7 � a8 � a16 + a18;
b2

�a4 + a5 + a7 � a9 � a10 + a12 � a16 + a17;

;
b3

�a4 + a6 + a7 � a9 � a11 + a12;
b4

a2 � a3 � a10 + a11 � a13 + a15;

;
b5

�a8 + a9 + a11 � a12 � a13 + a14;
b6

a1 � a2 � a7 + a9 + a10 � a12} =

= {b1, b2, b3, b4, b5, b6}

We indicate with CS the free-module over C on the set of maximal chains of

PS = ⇧4 without the minimal and maximal element. Thus,

CS = C[2] = C1

Before we can calculate �1 we need to see how ↵ = ↵[2] works on C1:

↵ : S4 �! GL(C1)

(12) 7�! ↵(12)

(123) 7�! ↵(123)

(1234) 7�! ↵(1234)

(12)(34) 7�! ↵(12)(34)
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↵(12)(a1) = a1 ↵(12)(a2) = a2 ↵(12)(a3) = a3 ↵(12)(a4) = a7 ↵(12)(a5) = a9

↵(12)(a6) = a8 ↵(12)(a7) = a4 ↵(12)(a8) = a6 ↵(12)(a9) = a5 ↵(12)(a10) = a17

↵(12)(a11) = a18 ↵(12)(a12) = a16 ↵(12)(a13) = a14 ↵(12)(a14) = a13

↵(12)(a15) = a15 ↵(12)(a16) = a12 ↵(12)(a17) = a10 ↵(12)(a18) = a11

↵(123)(a1) = a7 ↵(123)(a2) = a8 ↵(123)(a3) = a9 ↵(123)(a4) = a1 ↵(123)(a5) = a3

↵(123)(a6) = a2 ↵(123)(a7) = a4 ↵(123)(a8) = a6 ↵(123)(a9) = a5 ↵(123)(a10) = a18

↵(123)(a11) = a17 ↵(123)(a12) = a16 ↵(123)(a13) = a10 ↵(123)(a14) = a11

↵(123)(a15) = a12 ↵(123)(a16) = a15 ↵(123)(a17) = a14 ↵(123)(a18) = a13

↵(1234)(a1) = a8 ↵(1234)(a2) = a7 ↵(1234)(a3) = a9 ↵(1234)(a4) = a18 ↵(1234)(a5) = a16

↵(1234)(a6) = a17 ↵(1234)(a7) = a14 ↵(1234)(a8) = a13 ↵(1234)(a9) = a15 ↵(1234)(a10) = a1

↵(1234)(a11) = a2 ↵(1234)(a12) = a3 ↵(1234)(a13) = a10 ↵(1234)(a14) = a11

↵(1234)(a15) = a12 ↵(1234)(a16) = a5 ↵(1234)(a17) = a4 ↵(1234)(a18) = a6

↵(12)(34)(a1) = a8 ↵(12)(34)(a2) = a7 ↵(12)(34)(a3) = a9 ↵(12)(34)(a4) = a18

↵(12)(34)(a5) = a16 ↵(12)(34)(a6) = a17 ↵(12)(34)(a7) = a14 ↵(12)(34)(a8) = a13

↵(12)(34)(a9) = a15 ↵(12)(34)(a10) = a1 ↵(12)(34)(a11) = a2 ↵(12)(34)(a12) = a3

↵(12)(34)(a13) = a10 ↵(12)(34)(a14) = a11 ↵(12)(34)(a15) = a12

↵(12)(34)(a16) = a5 ↵(12)(34)(a17) = a4 ↵(12)(34)(a18) = a6
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�1 : S4 �! GL( eH1(⇧4))

Id 7�! I6

(12) 7�! �1(12)
(123) 7�! �1(123)
(1234) 7�! �1(1234)
(12)(34) 7�! �1(12)(34)

�1(12) :
eH1(⇧4) �! eH1(⇧4)

b1 7�! -b3

b2 7�! -b2

b3 7�! -b1

b4 7�! b1-b2 + b4-b5

b5 7�! b1-b3-b5

b6 7�! b2 + b6

�1(12) =

0

B

B

B

B

B

B

B

B

B

B

@

0 0 �1 1 1 0

0 �1 0 �1 0 1

�1 0 0 0 �1 0

0 0 0 1 0 0

0 0 0 �1 �1 0

0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

A

�1(123) :
eH1(⇧4) �! eH1(⇧4)

b1 7�! -b3-b4-b6

b2 7�! -b1-b4 + b5-b6

b3 7�! -b2-b6

b4 7�! -b1 + b2

b5 7�! b2-b3

b6 7�! b1

�1(123) =

0

B

B

B

B

B

B

B

B

B

B

@

0 �1 0 �1 0 1

0 0 �1 1 1 0

�1 0 0 0 �1 0

�1 �1 0 0 0 0

0 1 0 0 0 0

�1 �1 �1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

�1(1234) :
eH1(⇧4) �! eH1(⇧4)

b1 7�! -b1 + b3 + b5

b2 7�! -b1-b4 + b5-b6

b3 7�! -b1 + b2-b4 + b5

b4 7�! -b6

b5 7�! b4

b6 7�! b4-b5 + b6

�1(1234) =

0

B

B

B

B

B

B

B

B

B

B

@

�1 �1 �1 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 �1 �1 0 1 1

1 1 1 0 0 �1
0 �1 0 �1 0 1

1

C

C

C

C

C

C

C

C

C

C

A
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�1(12)(34) :
eH1(⇧4) �! eH1(⇧4)

b1 7�! -b2 + b3

b2 7�! -b2

b3 7�! b1-b2

b4 7�! b4-b5 + b6

b5 7�! -b5

b6 7�! -b6

�1(12)(34) =

0

B

B

B

B

B

B

B

B

B

B

@

0 0 1 0 0 0

�1 �1 �1 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 �1 �1 0

0 0 0 1 0 �1

1

C

C

C

C

C

C

C

C

C

C

A

��1 : S4 �! C
Id 7�! 6

(12) 7�! 0

(123) 7�! 0

(1234) 7�! 0

(12)(34) 7�! �2

To do less calculations you could directly find �S using Theorem 3.7.

Comparing this result with the Example 5, we note that the representation

�1 we found is isomorphic to the induced representation indS4
C4
(i).

We want to show that the result we obtained is not a case but extends to

all the partitions lattices ⇧n, n 2 N.
The facts we need are the following results of P. Hall and P. Hanlon:

Corollary 3.13. Let L be a finite lattice with atoms {a1, . . . , an} and coatoms

{b1, . . . , bm}.

a) If b0 is not the meet of coatoms, i.e.

b1 ^ b2 ^ · · · ^ bm 6= b0

then:

µ(b0,b1) = 0
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b) If b1 is not the join of atoms, i.e.

a1 _ a2 _ · · · _ am 6= b1

then:

µ(b0,b1) = 0

Proof . See [17], Corollary (Ph. Hall); pag 349.

Lemma 3.14. Let ⇡ 2 Sn, and let ⇧⇡
n denote the sublattice of ⇧n fixed

pointwise by ⇡. Let µ⇡ denote the Möbius function of ⇧⇡
n. Then:

µ⇡(b0,b1) =

8

<

:

(�1)d�1µ(n/d)(d� 1)!(n/d)d�1, if ⇡ is a product of d cycles of length n/d

0, otherwise

Here µ(n/d) denotes the usual number-theoretic Möbius function.

Proof . See [11], Theorem 4; pag 338.

Hanlon actually computes µ⇡(x⇡,b1), where x⇡ is the meet of the coatoms of

⇧⇡
n. It follows from [11] Lemma 2 that:

x⇡ = b0 () all cycles of ⇡ have the same length

Combining the previous results with Corollary 3.13 we obtain the proof of

the lemma.

Theorem 3.15. Let µ denotes the usual number-theoretic Möbius function.

Then:

µ(n) =
X

1hn
(h,n)=1

e
2⇡ih
n

i.e. the sum of the primitive n-th roots of unity.

Proof . See [12], Theorem 271 and Equation (16.6.4), pag 239.

Let Cn be a cyclic subgroup of Sn of order n generated by an n-cycle �.

Let ⇣ = e2⇡i/n and let ⇢n be the associated representation of Cn:

⇢n : Cn �! GL(V ) ' C⇤

� 7�! ⇣
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Define the induced representation:

 n = indSn
Cn

(⇢n)

Lemma 3.16. Let ⇡ 2 Sn. Using the notations described above we claim:

� n(⇡) =

8

<

:

µ(n/d)(d� 1)!(n/d)d�1, if ⇡ is a product of d cycles of length n/d

0, otherwise

Proof . Theorem 1.36 on the character of induced representation yields

� n(⇡) =
|Sn|

|Cn||C⇡|
X

⌧2C⇡
T

Cn

�⇢n(⌧) =
(n� 1)!

|C⇡|
X

⌧2C⇡
T

Cn

�⇢n(⌧) (3.7)

where C⇡ is the conjugacy class of Sn containing ⇡.

Suppose that ⇡ has d cycles, hence:

� n(⇡) = 0 unless d|n and ⇡ has d cycles of length n/d.

Indeed, if d - n and ⇡ has not d cycles of length n/d then C⇡
T

Cn = ;.

Let ⇡ have d cycles of length n/d, if ⌧ 2 C⇡
T

Cn then:

9k with gcd(n, k) = d such that �k = ⌧

⇢n(⌧) = �⇢n(⌧) = ⇣k

Let z be a primitive n-th root of unity. A power w = zk of z is a primitive

a-th root of unity for

a =
n

gcd(n, k)

In our case ⇣ is a primitive n-th root of unity, then �⇢n(⌧) is a primitive

n/d-th root of unity, so �⇢n(⌧) runs through all primitive n/d-th root of unity.

From Theorem 3.15 we obtain that:

X

⌧2C⇡
T

Cn

�⇢n(⌧) = µ(n/d)
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We can compute the size of the conjugacy class C⇡ using the Proposition

1.1.1 of [18] and we obtain:

|C⇡| =
n!

(n/d)d d!
=

(n� 1)!

(n/d)d�1 (d� 1)!

Substituting what obtained in the equation (3.7) we have:

� n(⇡) =
(n� 1)! (n/d)d�1 (d� 1)!

(n� 1)!
µ(n/d) = (n/d)d�1 (d� 1)! µ(n/d)

Theorem 3.17. Let G = Sn acts on P = ⇧n in the obvious way. Then:

�[n�2] = �n�3 = (sgn)  n

Proof . From Equation (3.5) and Equation (3.6) we get:

e⇤[n�2](⇡) = (�1)n�3 ��[n�2]
(⇡) = (�1)n�1 ��[n�2]

(⇡)

e⇤[n�2](⇡) = eE(P ⇡
[n�2]) = eE(P ⇡) = eE(⇧⇡

n)

From Equation (3.2) we have also:

eE(⇧⇡
n) = µ⇡(⇧

⇡
n) = µ⇡(b0,b1)

By combining these last two results with Lemma 3.14 we get that:

��[n�2]
(⇡) = (�1)n�1

e⇤[n�2](⇡) = (�1)n�1 µ⇡(b0,b1)

��[n�2]
(⇡) =

8

<

:

(�1)n+dµ(n/d)(d� 1)!(n/d)d�1, if ⇡ is a product of d cycles of length n/d

0, otherwise

Using Lemma 3.16 we have:

��[n�2]
(⇡) = (�1)n+d � n(⇡) = (�1)n�d � n(⇡)

Remark. Note that if n 6⌘ 2(mod 4), then either (�1)n�d = 1 or µ(n/d) = 0

for all d | n.
Thus in this case:

�n�3 = �[n�2] =  n
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Chapter 4

Representations on the

homology of dual matroid of

complete graphs

4.1 Alexander duality for non spanning ma-

troid and independence dual matroid

Let M = (E, I) be a matroid and M⇤ = (E, I⇤) its dual (See Subsection

2.2.3).

A ✓ E is non-spanning in M if and only if it does not contain any basis of

M , i.e. rk(A) < rk(E). Let

NS(M) = {A ✓ E | A is non spanning in M}

It is easy to see that NS(M) is an abstract simplicial complex.

The two rank functions are as follows:

rk : P(E) �! Z+

U 7�! max
A✓U
A2I

|A|

105
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rk⇤ : P(E) �! Z+

U 7�! max
A✓U
A2I⇤

|A|

Remark. rk(E) is equal to the number of elements of a basis of M .

Proposition 4.1. A ✓ E is not-spanning in M⇤ if and only if Ac is depen-

dent in M .

Proof . If A ✓ E is not-spanning in M⇤ we have:

rk⇤(A) < rk⇤(E)

By Lemma 2.74, this is equivalent to:

rk(Ac) + |A|� rk(E) < rk⇤(E)

m

rk(Ac) < �|A|+ rk(E) + rk⇤(E)
| {z }

|E|

= |E|� |A| = |Ac|() Ac /2 I

For every A ✓ E, we have rk(A) 6 |A|, thus A is independent if and only if

rk(A) = |A|.

We have deduced from the Alexander’s duality (Theorem 2.45) that for

every simplicial complex � on vertex set V such that V /2 �, with n = |V |:

eHi(�) ' eHn�3�i(�⇤)

We are working with reduced (co)homology groups eH(�) = eH(�,C) with

coe�cients in C, and we claim that:

eHj(�) ' eHj(�)

In fact, working with complex coe�cients the reduced cohomology group
eHj(�) is the dual vector space of the reduced homology group eHj(�).

Combining the two results we obtain:

eHi(�) ' eHn�3�i(�
⇤) (4.1)
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Proposition 4.2. Let � = IN(M) = I be the abstract simplicial complex

associated with the independents of the matroid M = (E, I) and let �⇤ be

the dual complex defined in the preliminaries chapter, then:

�⇤ = NS(M⇤)

Proof . Using the result shown in Propostion 4.1 we claim that:

�⇤ = {A ✓ V : (V r A) /2 �} = {A ✓ E : Ac /2 I} =

= {A ✓ E : Ac is dependent in M = (E, I)} =

= {A ✓ E : A is not spanning of M⇤} = NS(M⇤)

The previous result, together with Equation (4.1), implies the following:

eHi(IN(M)) ' eHn�3�i(NS(M
⇤))

Since M⇤⇤ = M , by duality we obtain:

Theorem 4.3.
eHi(NS(M)) ' eHn�3�i(IN(M

⇤))

4.2 Isomorphism between homology of non

spanning complex of a matroid and ho-

mology of its lattice of flats

Let L be a lattice with maximal and minimal element b1 and b0 respectively.

Definition 4.4. If L is a lattice with b0 and b1, a cross-cut of L is a set C ✓ L

such that:

i) b0 , b1 /2 C.

ii) If x, y 2 C then x ⌅ y and y ⌅ x. (x and y are incomparable)
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iii) Any finite chain x1 < x2 < · · · < xn in L can be extended to a chain

which contains an element of C.

In particular, axiom iii) implies that every maximal chain contains an element

of C.

Let L be a lattice with b1 and b0 and let C be a cross-cut of L.

Definition 4.5. A finite subset {x1, . . . , xn} ✓ C ‘spans’ if and only if

x1 ^ x2 ^ · · · ^ xn = b0 and x1 _ x2 _ · · · _ xn = b1

Here x ^ y denotes the largest element  x and  y, and x _ y denotes

the smallest element > x and > y.

Let K(C) be the abstract simplicial complex whose vertices are the elements

of C and whose simplexes are all finite subsets of C which do not ‘span’.

We define eHi(C) = eHi(K(C)).

Let K(L) be the abstract simplicial complex of the poset L as we have seen

in the section 3.1 and define eHi(L) = eHi(K(L)) = eHi(L).

Theorem 4.6. eHi(C) ' eHi(L)

Proof . See [9], Theorem 3.1; pag 633.

Let M = (E, I) be a simple matroid with E = {a1, . . . am}. (See Defi-

nition 2.49) Let L(M) be the lattice of flats of M ordered by inclusion, we

want to consider a cross-cut of L.
Since M is simple we have that each singleton of E is a flat, so in L(M) we

have ;, {a1}, {a2}, . . . , {am} 2 L(M) and these corresponds to the atoms of

the poset (L(M),✓).
Consider

C = {{a1}, {a2}, . . . , {am}} ✓ L(M)

C is a cross-cut of L, indeed:

i) b0,b1 /2 C
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ii) All the atoms are incomparable with the inclusion.

iii) Every maximal chain have one element of C because {a1}, {a2}, . . . , {am}
are the atoms of the lattice L(M).

We want to prove that:

K(C) = NS(M)

In the following proposition we perform a slight abuse of notation by identi-

fying:

C = {{a1}, {a2}, . . . , {am}} = {a1, a2, . . . , am}

Proposition 4.7. A ✓ C does not ‘span’ if and only if A is a non-spanning

set in M = (E, I).

Proof . =)) In L(M) we have:

b0 = ; b1 = E

Let A = {ai1 , ai2 , . . . , ain} be a subset of C. If A ✓ C does not ‘span’ :

ai1 _ ai2 _ · · · _ ain = D 6= b1 (4.2)

D 2 L(M) and D 6= b1 implies that D is a non-spanning subset of E

because the only spanning subset in L(M) is E = b1.

It follows from (4.2) that A ✓ D; since D is a non-spanning subset of

E then A is a non-spanning subset of E.

(=) In NS(M) the bases are the maximal non-spanning subsets of E, (i.e,

the subsets of E, such that if we add an element they become spanning

set) so they are flats, in particular they correspond to the co-atoms of

(L(M),✓).
Let A = {ai1 , ai2 , . . . , ain} be a non-spanning subset of E, there exist a

basis B of NS(M) such that:

A ✓ B B is a flat) B 2 L(M)



110
4. Representations on the homology of dual matroid of complete

graphs

This implies:

ai1 _ ai2 _ · · · _ ain ✓ B 6= b1

then A does not ‘span’.

Using the result of Proposition 4.7, we obtain:

K(C) = NS(M)

If we consider a cross-cut C of L(M) as follows:

C = {atoms of L(M)}

we shall obtain by Theorem 4.6:

Theorem 4.8.

eHi(L(M)) ' eHi(C) = eHi(NS(M))

4.3 Representations on the homology of dual

matroid of a complete graph

By combining the results of the two previous sections we get that, for

every simple matroid, we have the isomorphism:

eHn�3�i(IN(M⇤)) ' eHi(L(M)) (4.3)

We now consider the following equivalent simple matroids

M⇤(�+
Ar�1

, I) = M⇤(Kr)

and we describe the representation we have seen in Subsection 2.2.7.

Theorem 4.9. eHn�3�i(IN(M⇤(Kr))) and eHi(⇧r) are isomorphic as Sr-

modules.
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Proof . In particular from Subsection 2.2.5 we get that:

L(M(�+
Ar�1

, I)) = L(M(Kr)) = ⇧r

From Equation (4.3) with

n = |E(M⇤(�+
Ar�1

))| = |�+(Ar�1)| =
✓

r

2

◆

=
r(r � 1)

2

we get these natural isomorphisms:

eHn�3�i(IN(M⇤(�+
Ar�1

))) ' eHi(L(M(�+
Ar�1

, I))) ' eHi(⇧r)

or, rephrased in terms of the complete graph:

eHn�3�i(IN(M⇤(Kr))) ' eHi(L(M(Kr)) ' eHi(⇧r)

Since the isomorphism eHn�3�i(IN(M⇤(�+
Ar�1

))) ' eHi(⇧r) is natural, it also

respects the action of the symmetric group Sr.

Remark. We can make a dimensional calculation to better understand the

dimensional shift.

The matroid M(�+
Ar�1

, I) has rank equal to r � 1, i.e. each basis has r � 1

elements. Therefore, the matroid M⇤(�+
Ar�1

, I) has rank equal to:

r(r � 1)

2
� (r � 1) =

(r � 1)(r � 2)

2

Thus the dimension of the top homology of IN(M⇤(�+
Ar�1

) is one less than

the number of the elements of a basis of M⇤(�+
Ar�1

, I):

(r � 1)(r � 2)

2
� 1

We have that:
eHn�3�i(IN(M⇤(�+

Ar�1
))) ' eHi(⇧r)

We impose

n� 3� i =
(r � 1)(r � 2)

2
� 1
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and we get the i:

r(r � 1)

2
� 3� i =

(r � 1)(r � 2)

2
� 1

r2 � r � 6� 2i = r2 � 2r � r + 2� 2 =) i = r � 3

Indeed, Hr�3(⇧r) is the only nonzero homology group of ⇧r.

By Theorem 4.9 these two representations

⇢n�r : Sr �! GL( eHn�r(IN(M⇤(�+
Ar�1

))))

and

�r�3 : Sr �! GL( eHi(⇧r))

are isomorphic. As seen in Section 3.2 we get that

⇢n�r ' �r�3 ' (sgn) indSr
Cr
(e2⇡i/r)

Similarly,

⇢n�r : Sr �! GL( eHn�r(IN(M⇤(Kr))))

and we get

⇢n�r ' �r�3 ' (sgn) indSr
Cr
(e2⇡i/r).



Chapter 5

Representations on the

homology for the root system

B2

Now we consider the root system of type B2,

�B2 = {±↵1,±↵2,±(↵1 + ↵2),±(2↵1 + ↵2)}

which corresponds to the Lie algebra SO(5,C). We find the representations

on eH(IN(M⇤(�+
B2
))) of the Weyl group on �B2 without considering the sign,

i.e what we did in the thesis for �An .

First we study the homology group eH(IN(M⇤(�+
B2
))):

�+
B2

= {↵1,↵2,↵1 + ↵2, 2↵1 + ↵2} = {v1, v2, v3, v4}

IN(M(�+
B2
)) =

n

{↵1,↵2}, {↵1,↵1+↵2}, {↵1, 2↵1+↵2}, {↵2,↵1+↵2}, {↵2, 2↵1+↵2},

, {↵1 + ↵2, 2↵1 + ↵2}, {↵1}, {↵2}, {↵1 + ↵2}, {2↵1 + ↵2}
o

IN(M⇤(�+
B2
)) =

n

{↵1+↵2, 2↵1+↵2}, {↵2, 2↵1+↵2}, {↵2,↵1+↵2}, {↵1, 2↵1+↵2},

113
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{↵1,↵1 + ↵2}, {↵1,↵2}, {↵1}, {↵2}, {↵1 + ↵2}, {2↵1 + ↵2}
o

The independence set IN(M⇤(�+
B2
)) is a simplicial complex that we can

embed in R2:

Geometrically we see that the dimension of eH1(IN(M⇤(�+
B2
))) is three,

now we calculate a basis explicitly.

First, we write down the basis of the two free modules C1 and C0:

BC1 =
n a1

[v1, v2],
a2

[v1, v3],
a3

[v1, v4],
a4

[v2, v3],
a5

[v2, v4],
a6

[v3, v4]
o

= {a1, a2, a3, a4, a5, a6}

BC0 = {v1, v2, v3, v4}

C1 ' C6 C0 ' C4

0
@2�! C1

@1�! C0
eH1(IN(M⇤(�+

B2
))) = ker(@1)/Im(@2) = ker(@1)
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@1 : C1 �! C0

a1 7�! v2 � v1

a2 7�! v3 � v1

a3 7�! v4 � v1

a4 7�! v3 � v2

a5 7�! v4 � v2

a6 7�! v4 � v3

@1 =

0

B

B

B

B

@

-1 -1 -1 0 0 0

1 0 0 -1 -1 0

0 1 0 1 0 -1

0 0 1 0 1 1

1

C

C

C

C

A

eH1(IN(M⇤(�+
B2
))) = Span

n

a2�a3+a6; a1�a3+a5; a1�a2+a4
o

= {b1, b2, b3}

The Weyl group WB2 is isomorphic to the dihedral group

D4 = hr, s | r4 = s2 = (sr)2 = 1i

� : WB2 �! D4

�↵1 7�! r2s

�↵2 7�! rs

 : D4 �! WB2

r 7�! �↵2 � �↵1+↵2

s 7�! �↵1+↵2

and we have � �  =  � � = id.

The dihedral group D4 has five conjugacy classes:

{id} {r2} {r, r3} {s, r2s} {rs, r3s}

and therefore the following character table (See [19], Section 5.3; pag 36.):

Table 5.1: Character table of D4

id r2 r|r3 s|r2s rs|r3s
�V1 1 1 1 1 1

�V2 1 1 1 -1 -1

�V3 1 1 -1 1 -1

�V4 1 1 -1 -1 1

�V5 2 -2 0 0 0

�Vreg 8 0 0 0 0
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The action of the Weyl group on �B2 induces a permutation on the vertex

set of the simplicial complex IN(M⇤(�+
B2
)) as seen in Subsection 1.1.2 for

�An�1 . Since W is generated by r and s, the action is described as follows:

s : �B2 �! �B2

↵1 7�! ↵1

↵2 7�! �(2↵1 + ↵2)

↵1 + ↵2 7�! �(↵1 + ↵2)

2↵1 + ↵2 7�! �↵2

⌧s : �+
B2
�! �+

B2

v1 7�! v1

v2 7�! v4

v3 7�! v3

v4 7�! v2

r : �B2 �! �B2

↵1 7�! ↵1 + ↵2

↵2 7�! �(2↵1 + ↵2)

↵1 + ↵2 7�! �↵1

2↵1 + ↵2 7�! ↵2

⌧r : �+
B2
�! �+

B2

v1 7�! v3

v2 7�! v4

v3 7�! v1

v4 7�! v2

Our purpose is to find the following representation

⇢1 : D4 �! GL( eH1(IN(M⇤(�+
B2
)))

The maps {⌧g, g 2 W} induce linear maps on C1. In order to calculate

⇢1 we need to see how the representation on C1 works (See Subsection 2.1.6):

↵⌧ : D4 �! GL(C1)

r2 7�! ↵r2

r 7�! ↵r

s 7�! ↵s

rs 7�! ↵rs



117

The map ↵r2 is the identity on C1. Let’s see the others:

↵r : C1 �! C1

a1 7�! a6

a2 7�! �a2
a3 7�! �a4
a4 7�! �a3
a5 7�! �a5
a6 7�! a1

↵s : C1 �! C1

a1 7�! a3

a2 7�! a2

a3 7�! a1

a4 7�! �a6
a5 7�! �a5
a6 7�! �a4

↵rs : C1 �! C1

a1 7�! �a4
a2 7�! �a2
a3 7�! a6

a4 7�! �a1
a5 7�! a5

a6 7�! a3

We can now study the desired representation:

⇢1 : D4 �! GL( eH1(IN(M⇤(�+
B2
)))

Id 7�! I3

r2 7�! ⇢r2

r 7�! ⇢r

s 7�! ⇢s

rs 7�! ⇢rs

⇢r2 : eH1(IN(M⇤(�+
B2
)) �! eH1(IN(M⇤(�+

B2
))

b1 7�! b1

b2 7�! b2

b3 7�! b3

⇢r2 =

0

B

B

@

1 0 0

0 1 0

0 0 1

1

C

C

A

⇢r : eH1(IN(M⇤(�+
B2
)) �! eH1(IN(M⇤(�+

B2
))

b1 7�! b3

b2 7�! b1-b2 + b3

b3 7�! b1

⇢r =

0

B

B

@

0 1 1

0 -1 0

1 1 0

1

C

C

A

⇢s : eH1(IN(M⇤(�+
B2
)) �! eH1(IN(M⇤(�+

B2
))

b1 7�! -b3

b2 7�! -b2

b3 7�! -b1

⇢s =

0

B

B

@

0 0 -1

0 -1 0

-1 0 0

1

C

C

A
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⇢rs : eH1(IN(M⇤(�+
B2
)) �! eH1(IN(M⇤(�+

B2
))

b1 7�! -b1

b2 7�! -b1 + b2-b3

b3 7�! -b3

⇢rs =

0

B

B

@

-1 -1 0

0 1 0

0 -1 -1

1

C

C

A

�⇢1 : D4 �! C
Id 7�! 3

r2 7�! 3

r 7�! �1
s 7�! �1
rs 7�! �1

We now see how ⇢1 decomposes into irreducible representations:

(�⇢1 ,�V1) =
1

8
(3 + 3� 2� 2� 2) = 0

(�⇢1 ,�V2) =
1

8
(3 + 3� 2 + 2 + 2) = 1

(�⇢1 ,�V3) =
1

8
(3 + 3 + 2� 2 + 2) = 1

(�⇢1 ,�V4) =
1

8
(3 + 3 + 2 + 2� 2) = 1

(�⇢1 ,�V5) =
1

8
(3� 3 + 0 + 0 + 0) = 0

Therefore:

�⇢1 = �V2 + �V3 + �V4
eH1(IN(M⇤(�+

B2
)) ' V2 � V3 � V4
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