Unsupervised Learning of Scene Flow

Boschini, Matteo (2018) Unsupervised Learning of Scene Flow. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria informatica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (3MB)

Abstract

As Computer Vision-powered autonomous systems are increasingly deployed to solve problems in the wild, the case is made for developing visual understanding methods that are robust and flexible. One of the most challenging tasks for this purpose is given by the extraction of scene flow, that is the dense three-dimensional vector field that associates each world point with its corresponding position in the next observed frame, hence describing its three-dimensional motion entirely. The recent addition of a limited amount of ground truth scene flow information to the popular KITTI dataset prompted a renewed interest in the study of techniques for scene flow inference, although the proposed solutions in literature mostly rely on computation-intensive techniques and are characterised by execution times that are not suited for real-time application. In the wake of the recent widespread adoption of Deep Learning techniques to Computer Vision tasks and in light of the convenience of Unsupervised Learning for scenarios in which ground truth collection is difficult and time-consuming, this thesis work proposes the first neural network architecture to be trained in end-to-end fashion for unsupervised scene flow regression from monocular visual data, called Pantaflow. The proposed solution is much faster than currently available state-of-the-art methods and therefore represents a step towards the achievement of real-time scene flow inference.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Boschini, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Computer Vision,Artificial Intelligence,Deep Learning,Unsupervised Learning,Scene Flow,Optical Flow,Disparity,Stereo,Convolutional Neural Networks,CNNs,End-to-end training,KITTI
Data di discussione della Tesi
23 Luglio 2018
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^