Tombari, Francesca
(2018)
Deformation of surfaces in 2D persistent homology.
[Laurea magistrale], Università di Bologna, Corso di Studio in Matematica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (1MB) |
Abstract
In the context of 2D persistent homology a new metric has been recently introduced, the coherent matching distance. In order to study this metric, the filtering function is required to present particular “regularity” properties, based on a geometrical construction of the real plane, called extended Pareto grid. This dissertation shows a new result for modifying the extended Pareto grid associated to a filtering function defined on a smooth closed surface, with values in the real plane. In future, the technical result presented here could be used to prove the genericity of the regularity conditions assumed for the filtering function.
Abstract