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Introduction

One of the greatest challenge of our time is to organize and analyze the huge

amount of data collected in many scientific fields. In this context topological

data analysis (TDA) has an important role. Its main goal consists in ana-

lyzing big datasets by means of topological tools. A common way used in

this field to represent big datasets is the one of a cloud of points. The inter-

pretation of a cloud of points containing data requires a multilevel analysis

as the one used in persistent homology. The idea of it is that the topological

properties which persist at different levels are relevant. Persistent homology

tries to construct a bridge between topology and geometry, using homology

groups, a central tool in algebraic topology, to study shapes.

In Figure 1 we can follow the evolution at different levels of a cloud of

points. In this figure a cloud of points is represented, all the points are the

centers of disks having different radius at every subfigure. In this case the

relevant topological properties are the ones which persist during the increase

of the radius.

Another example of the use of persistent homology is shown in Figure 2.

Here the sublevel sets of a topological space X ⊆ R3 are considered varying

the height. We notice that the homology group in degree one becomes zero

when the height exceeds the value e.

Therefore, the theory of persistent homology is based on the study of

homology groups of different degrees of the sublevel sets of a continuous

function, called filtering function, informally speaking, the homology of de-

gree k shows the k-dimensional holes of the object.

More precisely, the filtering function, f , is defined generally on a topo-

logical space and takes values in Rm, where m is the number of properties

5



6 Introduction

Figure 1: Disks centered in a cloud of points with increasing radius. (Image

courtesy of the authors of [8])

we want to study simultaneously. In a cloud of points containing data each

point represents different measurements on the sample; shape comparison of

medical images also needs Rm-valued filtering functions. When Rm-valued

filtering functions are involved, we speak of m-dimensional persistent homol-

ogy. In the context of multidimensional persistence our objects of study will

be continuous filtering functions with values in the real plane and defined

on a smooth closed surface embedded in R3.

Persistent homology is proved to be much harder to study in the 2D

case than in the 1D case. These difficulties require the development of new

ideas and techniques. One of these new techniques is presented in [2], where

the main idea is to take back our setting from the 2-dimensional to the 1-

dimensional case by means of a specific family of functions depending on

two parameters (a, b) ∈]0, 1[×R. In particular if f = (f1, f2) : X −→ R2 is

our filtering function, we can associate it with the family f(a,b) : X −→ R,

where f(a,b)(x) := max
{
f1(x)−b

a , f2(x)+b
1−a

}
. Notice that every such a function

can be associated with a line of the real plane having positive slope, denoted

by r(a,b) and defined by the parametric equation (u, v) = (at+b, (1−a)t−b).
By means of this semplification it is possible to consider many 1-dimensional

filtrations of the topological space X depending on (a, b), described by the
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Figure 2: The sublevel sets of a topological space X. (Image courtesy of the

authors of [6]

sets {x ∈ X | f(a,b)(x) ≤ t}, instead of one 2-dimensional filtration induced

by f , i.e. {x ∈ X | f(x) � (u, v)}. For technical reasons the function f(a,b)

has to be normalized by multiplying f(a,b) by min{a, 1 − a}, and the new

function is denoted by f∗(a,b). Figure 3 shows a filtration associated with a

line having positive slope.

After fixing k ∈ N, each filtration associated with the function f∗(a,b)

defines a persistence diagram Dgm(f∗(a,b)) in degree k, while the collection of

all 1-dimensional persistence diagrams is called a 2-dimensional persistence

diagram. It encodes some topological properties of the filtered topological

space we want to study.

An important application of persistent homology is shape comparison.

In this context persistent homology offers a method to compare different

filtering functions and to measure “distances” between them. A common

way used to compare 2D persistence diagrams, {Dgm(f∗(a,b))}(a,b)∈]0,1[×R and

{Dgm(g∗(a,b))}(a,b)∈]0,1[×R, is to compute the supremum of the classical bottle-
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Figure 3: This picture shows the projection on the plane xz of a topological

space X ⊆ R3. The red line has positive slope in R2 and induces a filtration

on X. The green section is the sublevel associated with the point p of the

line.

neck distance between Dgm(f∗(a,b)) and Dgm(g∗(a,b)) over (a, b). This metric is

called matching distance, Dmatch. While the matching distance has a natural

and simple definition, unfortunately it presents two main problems. First,

the optimal matchings can greatly change when (a, b) changes. Secondly, the

intrinsic discontinuity in the definition of matching distance makes studying

its properties difficult.

For these reasons, a new metric for comparing 2D persistence diagrams

has been introduced in [5] and further analyzed in [4] named the coher-

ent matching distance. The main change of this distance with respect to

the previous one is that it takes into account only matchings that change

“coherently” with the filtrations.

The study of the coherent matching distance brings to light a phe-

nomenon of monodromy. This comes out when a pair (a, b) at which a

persistence diagram contains multiple points, called singular pair, is consid-

ered. Furthermore, turning around a singular pair can produce a permu-

tation of the points of the persistence diagram, so that a link between the

considered filtering function and a monodromy group appears.

In [4], some assumptions are made in order to define and study the
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coherent matching distance. The main assumption is to consider only a

subset of continuous filtering functions with values in R2 and defined on a

closed smooth manifold M of dimension n, i.e. the subset of the so called

normal functions. This kind of functions are defined by four properties

depending on the extended Pareto grid, a geometric construction in the real

plain. The extended Pareto grid is a collection of arcs and half-lines of R2

intersecting each other and depending on the images of some arcs in M by

the filtering function f = (f1, f2). The idea is to consider only the images

by f of the arcs on M at which the gradients of f1 and f2 are opposite,

and half-lines starting at the image by f of critical points of f1 and f2.

We refer to the arcs of the grid as proper contours, and to the half-lines as

improper contours. The definition of the Jacobi set of an R2-valued function

is also based on the linear dependence of the gradients: if they are linearly

dependent and opposite at a point, this point will be called a critical Pareto

point. As a consequence, the points of the extended Pareto grid belongs to

the Jacobi set. Sets of these points were previously studied in the context

of Morse theory for two functions. We refer the interested reader to [10]

and [3].

The research presented in this thesis starts at this point with the ques-

tion “Is the property of being normal for a filtering function generic in the

set of continuous functions?” In order to face this problem, we consider

a particular case of filtering function f : M −→ R2, defined by setting

f(p) = (x(p), z(p)), where M is a closed smooth surface embedded in R3,

since in this setting it is possible to make use of the classical geometry of

surfaces. In this setting, we present a technical result for modifing the ex-

tended Pareto grid of a filtering function. The main idea is to deform the

surface instead of the function on the surface, while preserving its smooth-

ness. Furthermore, the diffeomorphism from the initial to the final surface

will be local: in plain words it creates a “bump” on the surface. We hope

the developed tool can be useful for approximating filtering functions with

normal functions, avoiding situations in which at least one of the four prop-

erties fails. We also hope our research can pave the way to a proof for

the genericity of being normal for a function in the general case, remaining

aware that probably further ideas will be necessary.
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The outline of this thesis is as follows. In the first chapter the mathemat-

ical setting is presented, focusing on the definitions of admissible line, Jacobi

set and critical Pareto point, then we will construct the extended Pareto grid

with its proper and improper contours, and we will finally give the defini-

tions of normal function and contour-arc. The second chapter presents our

main result, that is a technical theorem used for “moving” proper contours

of a specific filtering function on a surface.



Introduzione

Una delle più grandi sfide del nostro tempo è quella di organizzare e analiz-

zare l’ampia quantità di dati raccolti nei diversi ambiti scientifici. In questo

contesto l’analisi topologica dei dati (TDA) ricopre un ruolo significativo.

Il suo principale obiettivo è quello di analizzare grandi insiemi di dati per

mezzo di strumenti topologici. Un modo molto comune in quest’ambito per

rappresentare grandi insiemi di dati è quello di una nube di punti. Per inter-

pretare l’informazione contenuta in una nube di punti è richiesta un’analisi

multilivello come quella usata in omologia persistente. L’idea alla base di

ciò è quella di considerare come rilevanti quelle proprietà che si mantengo-

no in diversi livelli. L’omologia persistente cerca di costruire un ponte tra

topologia e geometria utilizzando i gruppi di omologia, strumenti centrali in

topologia algebrica, per studiare le forme geometriche.

Nella Figura 4 possiamo seguire l’evoluzione di una nube di punti a

diversi livelli. In tale figura è infatti rappresentata una nube di punti, tutti i

punti presenti sono i centri di dischi aventi diverso raggio in ogni sottofigura.

In questo caso le proprietà topologiche rilevanti sono quelle che persistono

all’aumentare del raggio.

Un altro esempio di utilizzo dell’omologia persistente viene mostrato in

Figura 5. Qui sono considerati i sottolivelli di uno spazio topologico X ⊆ R3

al variare dell’altezza. Notiamo che il gruppo di omologia in grado uno

diventa nullo quando l’altezza supera il valore e.

La teoria dell’omologia persistente dunque è basata sullo studio dei grup-

pi di omologia a diversi gradi dei sottolivelli di una funzione continua,

chiamata funzione filtrante. Parlando informalmente i gruppi di omologia

mostrano i buchi k-dimensionali di un oggetto.

11
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Figura 4: Dischi centrati nei punti di una nube aventi raggio crescente.

(Ringraziamo gli autori di [8] per l’immagine)

Più precisamente, una funzione filtrante f è definita in generale su uno

spazio topologico e ha valori in Rm, dove m è il numero di proprietà che

si vogliono studiare contemporaneamente. In una nube di punti contenente

dei dati ogni punto rappresenta diverse misurazioni del campione; anche

il confronto di forma nelle immagini mediche richiede funzioni filtranti a

valori in Rm. Quando sono coinvolte funzioni filtranti a valori in Rm, si

parla di omologia persistente m-dimensionale. Nel contesto della persistenza

multidimensionale, il nostro oggetto di studio saranno le funzioni filtranti

continue a valori nel piano reale e definite su una superficie liscia chiusa

immersa in R3.

È dimostrato che l’omologia persistente è più difficile da studiare nel

caso 2D che nel caso 1D. Queste difficoltà richiedono lo sviluppo di nuove

idee e tecniche. Una di questa nuove tecniche è presentata in [2], dove l’idea

principale è quella di ricondurre il caso 2-dimensionale al caso 1-dimensionale

utilizzando una specifica famiglia di funzioni dipendente da due parametri

(a, b) ∈]0, 1[×R. In particolare, se f = (f1, f2) : X −→ R2 è la nostra

funzione filtrante, possiamo associare a essa la famiglia f(a,b) : X −→ R, dove

f(a,b)(x) := max
{
f1(x)−b

a , f2(x)+b
1−a

}
. Notiamo che ogni funzione di questa

forma può essere associata a una retta del piano reale avente pendenza
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Figura 5: Sottolivelli di uno spazio topologico X. (Ringraziamo gli autori

di [6] per l’immagine)

positiva, denotata con r(a,b) e definita dall’equazione parametrica (u, v) =

(at+ b, (1−a)t− b). Grazie a questa semplificazione, è possibile considerare

tante filtrazioni 1-dimensionali di uno spazio topologico X dipendenti da

(a, b), descritte dagli insiemi {x ∈ X | f(a,b) ≤ t}, al posto di un’unica

filtrazione 2-dimensionale indotta da f , ovvero {x ∈ X | f(x) � (u, v)}. Per

ragioni tecniche la funzione f(a,b) deve essere normalizzata moltiplicandola

per min{a, 1 − a}, la nuova funzione sarà denotata con f∗(a,b). La Figura 6

mostra la filtrazione associata a una retta con pendenza positiva.

Dopo aver fissato k ∈ N, ogni filtrazione associata a una funzione f∗(a,b)

definisce un diagramma di persistenza Dgm(f∗(a,b)) in grado k, e la collezione

di tutti questi diagrammi di persistenza 1-dimensionali è chiamata diagram-

ma di persistenza 2-dimensionale. Esso contiene informazioni sulle proprietà

topologiche dello spazio topologico filtrato che ci interessa studiare.

Un’applicazione importante dell’omologia persistente riguarda il con-

fronto di forma. In questo ambito l’omologia persistente offre un metodo
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Figura 6: Questa figura mostra la proiezione sul piano xz di uno spazio

topologico X ⊆ R3. La retta rossa ha pendenza positiva in R2 e induce una

filtrazione su X. La sezione verde è il sottolivello associato al punto p della

retta.

per comparare diverse funzioni filtranti e per misurare la “distanza” fra

esse. Un modo molto comune per confrontare diagrammi di persistenza

2D, {Dgm(f∗(a,b)}(a,b)∈]0,1[×R e {Dgm(g∗(a,b)}(a,b)∈]0,1[×R, è quello di calcolare

l’estremo superiore della classica distanza di bottleneck fra Dgm(f∗(a,b)) e

Dgm(g∗(a,b)) su (a, b). Questa metrica è chiamata matching distance, Dmatch.

Nonostante la matching distance abbia una definizione semplice e natura-

le, presenta due problemi rilevanti. Per prima cosa, i matching ottimali

possono cambiare notevolmente in seguito a piccoli cambiamenti della retta

usata per definire la filtrazione. Secondo, la definizione cos̀ı intrinsecamente

discontinua di matching distance rende difficile studiarne le proprietà.

Per queste ragioni, è stata introdotta in [5] e ulteriormente analizzata

in [4] una nuova metrica per confrontare i diagrammi di persistenza 2D,

detta coherent matching distance. Ciò che più differenzia questa metrica

dalla precedente è che questa prende in considerazione solo gli accoppiamenti

che cambiano in modo “coerente” con la filtrazione.

Lo studio della coherent matching distance porta alla luce un fenome-

no di monodromia. Questo emerge quando viene presa in considerazione

una coppia (a, b) per la quale un diagramma di persistenza contiene punti
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multipli, chiamata coppia singolare. Inoltre, girando intorno a una coppia

singolare si produce una permutazione dei punti del diagramma di persi-

stenza, cosicché si crea un collegamento fra la funzione filtrante considerata

e un gruppo di monodromia.

In [4], sono state necessarie alcune assunzioni di partenza per definire e

studiare la coherent matching distance. L’assunzione principale è quella di

considerare solo un sottoinsieme di funzioni filtranti continue a valori in R2

e definite su una varietà liscia chiusa di dimensione n, ovvero il sottoinsieme

delle cosiddette funzioni normali. Questo genere di funzioni è definito da

quattro proprietà dipendenti dalla extended Pareto grid, una costruzione

geometrica nel piano reale. La extended Pareto grid è una collezione di

archi e semirette di R2 che si intersecano a vicenda e sono dipendenti dalle

immagini di particolari archi su M per mezzo della funzione filtrante f =

(f1, f2). L’idea è quella di considerare solo le immagini per mezzo di f di

archi su M nei quali i gradienti di f1 e f2 sono opposti, e alcune semirette

che iniziano nelle immagini tramite f dei punti critici delle funzioni f1, f2.

Ci riferiremo agli archi della griglia come proper contours, e alle semirette

come improper contours. Anche la definizione di insieme di Jacobi di una

funzione a valori in R2 è basata sulla dipendenza lineare dei gradienti delle

componenti f1, f2: se sono linearmente dipendenti e opposti in un punto,

tale punto sarà chiamato critical Pareto point. Come conseguenza, i punti

della extended Pareto grid appartengono all’insieme di Jacobi. Gli insiemi

di questi punti sono stati precedentemente studiati nell’ambito della teoria

di Morse per due funzioni. I principali riferimenti per i lettori interessati

sono [10] e [3].

La ricerca presentata in questa tesi inizia con la domanda “Nell’insie-

me delle funzioni continue la proprietà di essere normale per una funzione

filtrante è generica?” Per cominciare l’esame di questo problema, consi-

deriamo un caso particolare di funzione filtrante f : M −→ R2, definita

ponendo f(p) = (x(p), z(p)), dove M è una superficie liscia chiusa immersa

in R3. In tal caso è possibile fare uso della teoria classica delle superfici. In

questo contesto presentiamo un risultato tecnico per modificare la extended

Pareto grid di una funzione filtrante. L’idea principale è quella di deformare

la superficie, al posto di cambiare la funzione sulla superficie, preservando
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la sua regolarità. Inoltre, il diffeomorfismo fra la superficie di partenza e

quella finale sarà locale, in altre parole esso creerà una protuberanza sul-

la superficie. Speriamo che lo strumento qui sviluppato possa essere utile

per l’approssimazione di funzioni filtranti con funzioni normali, evitando si-

tuazioni in cui alcune delle quattro proprietà che le definiscono non siano

verificate. Speriamo anche che la nostra ricerca apra la strada alla dimo-

strazione della proprietà di genericità per una qualsiasi funzione, rimanendo

ben consapevoli che saranno necessarie ulteriori idee.

Di seguito riportiamo i contenuti principali della tesi. Nel primo capi-

tolo viene presentato il setting matematico, focalizzando l’attenzione sulle

definizioni di retta ammissibile, insieme di Jacobi e critical Pareto point, poi

verrà costruita la extended Pareto grid con i suoi contour propri e impropri,

e, per concludere, verranno illustrate le definizioni di funzione normale e di

contour-arc. Il secondo capitolo contiene il nostro risultato centrale ovve-

ro un teorema tecnico con lo scopo di “spostare” i contour propri di una

specifica funzione filtrante su una superficie.



Capitolo 1

Mathematical setting

In this chapter the mathematical setting used in our research is described.

First of all we will see what persistence diagrams are, how they are con-

structed in the 2-dimensional setting and their reduction to the study of a

family of 1-dimensional persistence diagrams; in this context the concept

of admissible line is also presented. Then the central construction for the

study of 2D persistence is defined, i.e. the extended Pareto grid. In order

to do this it is necessary to introduce the Jacobi set, already studied in [10]

and [3]. Finally, normal functions are defined; they are functions with par-

ticular properties of regularity, taken as filtering functions in 2D persistent

homology.

The interested reader can find more details about our setting in the

papers [2], [4].

All the figures in this chapter are reproduced from [4], courtesy of the

authors of the paper.

1.1 Persistence diagrams

For u = (u1, u2) and v = (v1, v2) in R2, we define the relation � in the

following way: u � v (resp. u ≺ v) if and only if ui ≤ vi (resp.ui < vi) for

every index i = 1, 2.

We also denote by ∆+ the set {(u, v) ∈ R2×R2 | u ≺ v}, and Mf�u will

be the sublevel set {x ∈ M | fi(x) ≤ ui, i = 1, 2}, where u = (u1, u2) ∈ R2

17



18 CAPITOLO 1. MATHEMATICAL SETTING

and f : X −→ R2, with ∆ the boundary of ∆+, and with ∆∗ the union of

∆+ and {(u,∞) | u ∈ R}.
Now, let k ∈ Z. Let M be a topological space and f : M −→ R2 a con-

tinuous function. Let ik∗ : Hk(Mf�u) −→ Hk(Mf�v) be the homomorphism

induced by the inclusion map ik : Mf�u ↪→ Mf�v with u � v, where Hk

denotes the kth Čech homology group. If u ≺ v, ik∗(Hk(Mf�u)) is called the

multidimensional kth persistent homology group of (M,f) at (u, v) and it is

denoted by H
(u,v)
k (M,f).

For an explanation of the choice of working with Čech homology see [2],

while for details about Čech Homology we refer to [7].

If we assume to work with coefficients in a field K, the homology groups

have the structure of vector spaces. Therefore, they are completely described

by their dimension, so that the following definition has a central role.

Definition 1. The function βf (u, v) : ∆+ −→ N ∪ {∞} defined by

βf (u, v) := dim H
(u,v)
k (M,f)

will be called the persistent Betti numbers function of f , or PBNs.

Obviously, the persistent Betti numbers function depends on k, but, for

the sake of simplicity, we omit any reference to k in the notation. It has

been proved that if M is a finitely triangulable space, βf never attains the

value ∞.

In the rest of Section 1.1 we will assume that m = 1. We have previously

said that the persistent homology groups associated with a filtration of a

topological space are completly described by suitable subsets of R2, that we

will define soon, but first we give the statement of the following lemma:

Lemma 1. Let u1, u2, v1, v2 be real numbers such that u1 ≤ u2 < v1 ≤ v2.

It holds that

βf (u2, v1)− βf (u1, v1) ≥ βf (u2, v2)− βf (u1, v2).

In this way it is justified the following definition.

Definition 2. For every point p = (u, v) ∈ ∆+, we define the number µ(p)

as the minimum over all the positive real numbers ε, with u+ ε < v − ε, of

βf (u+ ε, v − ε)− βf (u− ε, v − ε)− βf (u+ ε, v + ε) + βf (u− ε, v + ε).
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The number µ(p) is called the multiplicity of p for βf . We will call every

point p ∈ ∆+ with multiplicity µ(p) > 0 a proper cornerpoint for βf .

Definition 3. For every vertical line r, with equation u = ū, for ū ∈ R, let

us identify r with (ū,∞) ∈ ∆∗, and define the number µ(r) as the minimum

over all the positive real numbers ε, with ū+ ε < 1
ε , of

βf

(
ū+ ε,

1

ε

)
− βf

(
ū− ε, 1

ε

)
.

The number µ(r) is called the multiplicity of r for βf . When µ(r) is strictly

positive, we call r a cornerpoint at infinity for βf .

Thanks to the definition of multiplicity above, we can give a representa-

tion of PBNs as a persistence diagram.

Definition 4. The persistence diagram Dgm(f) is the multiset of all corner-

points (both proper and at infinity) for βf , counted with their multiplicities,

union the points of ∆, counted with infinite multiplicity.

We refer to [2] for all the technical results concerning cornerpoints that

are required to show that persistence diagrams actually describe PBNs.

1.2 The foliation method in the 2D setting

Let us consider the set Λ+ of all lines of R2 that have positive slope. A

parametrization of this set can be obtained by taking the parameter space

P(Λ+) =]0, 1[×R, where each line r ∈ Λ+ is associated with the unique

pair (a, b), with 0 < a < 1 and b ∈ R, such that (a, 1 − a) is a direction

vector for r and (b,−b) ∈ r. The line r will be denoted by r(a,b). Λ+ is

referred to as the set of admissible lines. Each point (u, v) = (u(t), v(t)) =

t(a, 1 − a) + (b,−b) of r(a,b) can be associated with the subset Ma,b
t :=

M(u(t),v(t)), that is the set of points of M “whose image by f is under and

on the left of (u(t), v(t))” while (u(t), v(t)) moves along the line r(a,b). This

suggests to us that each admissible line r(a,b) defines a filtration {Ma,b
t } of

M and a persistence diagram associated with this filtration. The family

of the persistence diagrams associated with the lines r(a,b) is called the 2D

persistence diagram of f.
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It is interesting to observe that the filtration {Ma,b
t } can be also defined

as the sublevel sets filtration induced by a suitable real-valued function. In

fact, we have that Ma,b
t = {x ∈ M | f(a,b)(x) ≤ t} where f(a,b) : M → R

is defined by setting f(a,b)(x) := max
{
f1(x)−b

a , f2(x)+b
1−a

}
. The Reduction

Theorem proved in [2] states that the persistent Betti numbers function βf

can be completely recovered by considering all and only the persistent Betti

numbers function βf(a,b) associated with the admissible lines r(a,b), which are

in turn encoded in the corresponding persistence diagrams Dgm(f(a,b)).

In some sense, it is possible to bring back the study of 2D persistent

homology to the study of 1D persistence by means of the filtrations defined

by the lines r(a,b) varying (a, b) ∈ P(Λ+).

For technical reasons we consider the persistence diagram Dgm(f(a,b))

associated with the admissible line r(a,b) and normalize it by multiplying

its points by min{a, 1 − a}. This is equivalent to consider the normalized

persistence diagram Dgm(f∗(a,b)), i.e. the persistence diagram of the function

f∗(a,b) := min{a, 1− a} · f(a,b).

1.3 The Jacobi set

In order to proceed we will assume that M is a closed smooth surface em-

bedded in R3 and f : R3 −→ R2 is defined by setting f(p) = (f1(p), f2(p)) =

(x(p), z(p)). We will consider on M the filtering function given by the re-

striction of f to the surface M . This will be the context in which the main

result of this thesis works. The redundant definition of f will be justified

in the next chapter where we will restrict the function to different surfaces

embedded in R3.

Let us choose a Riemannian metric on M so that we can define gradients

for the two components of the function f .

Definition 5. The Jacobi set of f is the set

J(f) = {p ∈M | ∃λ ∈ R : ∇f1(p) = λ∇f2(p) or ∇f2(p) = λ∇f1(p)} (1.1)

namely it is the set of all points at which the gradients of f1 and f2 are

linearly dependent.
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In particular, if ∇f1(p) = λ∇f2(p) or ∇f2(p) = λ∇f1(p) with λ ≤ 0, the

point p ∈M is said to be a critical Pareto point for f . The set of all critical

Pareto points for f is denoted by JP (f).

Notice that the first relation in (1.1) misses the cases in which∇f2(p) = 0

and ∇f1(p) 6= 0, so the only reason for the second relation is to capture these

cases. The points satisfying these conditions are the critical points of f2 that

are not critical points for f1. They are obviously contained in JP (f), as also

the critical points of f1.

We assume that

i) No point p ∈M exists such that both ∇f1(p) and ∇f2(p) vanish;

ii) J(f) is a smoothly embedded 1-manifold in M consisting of finitely many

components, each one diffeomorphic to a circle;

iii) JP (f) is a 1-dimensional closed submanifold of M , with boundary in

J(f).

We consider the set JC(f) of cusp points of f , that is, points of J(f) at

which the restriction of f to J(f) fails to be an immersion. In other words

JC(f) is the subset of J(f) at which ∇f1 and ∇f2 are both orthogonal to

J(f). Of course JC(f) ⊆ JP (f).

We also assume that

iv) The connected components of JP (f) \ JC(f) are finite in number, each

one being diffeomorphic to an interval. With respect to any parame-

trization of each component, one of f1 and f2 is strictly increasing

and the other is strictly decreasing. Each component can meet critical

points for f1, f2 only at its endpoints.

In [10] it is proved the genericity of the previous properties in the set of

smooth maps from M to R2.

Property iv) implies that the connected components of JP (f)\JC(f) are

open, or closed, or semi-open arcs in M . Following the notation used in

[10], they will be referred to as critical intervals of f . If an endpoint p of a

critical interval actually belongs to that critical interval and hence is not a

cusp point, then it is a critical point for either f1 or f2.
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1.4 The extended Pareto grid

An important tool in 2D-persistent homology is the extended Pareto grid, a

particular subset of R2 consisting of monotone arcs, along which y decreases

when x increases, and half-lines. We will recall its definition in this section,

together with a formal link between the position of points of the persistence

diagram Dgm(f∗(a,b)) and the intersection between the admissible line r(a,b)

with the extended Pareto grid.

Let us list the critical points p1, . . . , ph of f1 and the critical points

q1, . . . , qk of f2 (our assumption i) guarantees that {p1, . . . , ph}∩{q1, . . . qk} =

∅ ). Consider the following closed half-lines: for each critical point pi of f1

(resp. each critical point qj of f2), the half-line {(x, y) ∈ R2 | x = f1(pi), y ≥
f2(pi)} (resp. the half-line {(x, y) ∈ R2 | x ≥ f1(qj), y = f2(qj)}).

Definition 6. The extended Pareto grid Γ(f) is defined to be the union of

f(JP (f)) with these closed half-lines. The closures of the images of critical

intervals of f will be called proper contours of f , while the closed half-lines

will be known as improper contours of f .

Observe that every contour is a closed subset of the real plane and the

number of contours of f is finite because of property iv). Figure 1.2 shows

an example of Pareto grid, where the manifold is a 2-dimensional torus and

the filtering function is f(p) = (x(p), z(p)) (see Figure 1.1).

Let S(f) be the set of all points of Γ(f) that belong to more than one

contour. If S(f) contains only a finite number of points, it makes sense to

define the multiplicity of p in Γ(f) as the greatest k such that for every ε > 0

a line r(a,b) with (a, b) ∈ P(Λ+) exists, verifying these two properties: r(a,b)

does not meet S(f) and the cardinality of r(a,b) ∩ Γ(f) ∩B(p, ε) is k, where

B(p, ε) is the open ball of center p and radius ε with respect to the Euclidean

distance. In plain words, we can say that the multiplicity of p ∈ Γ(f) is the

maximum k such that there exists a line with positive slope that does not

intersect S(f) and contains k points of the extended Pareto grid close to

p. (This definition should not be confused with multiplicity for points in

persistence diagrams.)

Let D(f) be the set of all points p ∈ Γ(f) that have multiplicity strictly

greater than 1, still assuming that S(f) contains only a finite number of
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Figura 1.1: The torus endowed with the filtering function f(p) :=

(x(p), z(p))

points. We observe that D(f) ⊆ S(f). Each connected component of Γ(f)\
D(f) will be called a contour-arc of f . Therefore, the contour-arcs do not

contain their endpoints.

Figure 1.3 shows all the contour-arcs of the previous example.

1.5 Normal functions

Recently a new distance has been defined to compare different persistence

diagrams of functions with value in R2, called coherent matching distance,

and investigated in [4] and [5]. There the filtering function is required to be

pretty regular in a precise sense described below.

Definition 7. We say that the function f : M −→ R2 verifying the

properties i), ii), iii), iv) is normal if the following statements also hold:

(1) The set S(f) is finite;

(2) Each multiple point of Γ(f) is double;

(3) No line r(a,b) exists containing more than two multiple points of Γ(f);
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Figure 6. The torus endowed with the filtering function f(p) := (x(p), z(p)).

•

•

•

•

•

•

•

•

r(a,b)

•

•

••
•
•

•

Figure 7. The extended Pareto grid for the torus in Figure 6,
endowed with the filtering function f(p) := (x(p), z(p)). The im-
ages of the critical intervals are in red, the vertical half-lines with
abscissa equal to a critical value of f1 are in purple, and the hor-
izontal half-lines with ordinate equal to a critical value of f2 are
in orange. A blue admissible line r(a,b) is also represented. The
extended Pareto grid Γ(f) contains the red, purple and orange
points. The highlighted red points are endpoints of contours.

small enough ε > 0, when ik∗ is the map Hk(M(u−ε,v−ε)) → Hk(M(u+ε,v+ε))
induced by the inclusion M(u−ε,v−ε) �→ M(u+ε,v+ε):

• If k �= d(γ), ik∗ is an isomorphism;
• If k = d(γ) and s(γ) = 1, ik∗ is injective and rank

�
Hk(M(u+ε,v+ε))

�
=

rank
�
Hk(M(u−ε,v−ε))

�
+ 1;

• If k = d(γ) and s(γ) = −1, ik∗ is surjective and rank
�
Hk(M(u+ε,v+ε))

�
=

rank
�
Hk(M(u−ε,v−ε))

�
− 1.

Figura 1.2: The extended Pareto grid for the example above. All the proper

contours are in red, the red points are the images by f of the critical points

of the two components of f , the purple half-lines are the improper contours

associated with critical points of f1 and the orange half-lines are the impro-

per contours associated with critical points of f2. A blue admissible line is

also represented and the green points are its intersection with the extended

Pareto grid.

(4) Every contour-arc γ of f is associated with a pair (d(γ), s(γ)) ∈ Z ×
{−1, 1} such that at each point (u, v) of γ the following properties hold

for every small enough ε > 0, when ik∗ is the map Hk(M(u−ε,v−ε)) →
Hk(M(u+ε,v+ε)) induced by the inclusion M(u−ε,v−ε) ↪→M(u+ε,v+ε):

• If k 6= d(γ), ik∗ is an isomorphism;

• If k = d(γ) and s(γ) = 1, ik∗ is injective and

rank(Hk(M(u+ε,v+ε)) = rankHk(M(u−ε,v−ε)) + 1;

• If k = d(γ) and s(γ) = −1, ik∗ is surjective and
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Figure 8. The connected components obtained by deleting the
double points (in white) from Γ(f) are the contour-arcs for the
torus in Figure 6, endowed with the filtering function f(p) :=
(x(p), z(p)). In this example Γ(f) contains 20 contour-arcs.

Remark 3.2. It is not difficult to prove that in Property (4) of Definition 3.1 the
two groups Hk(M(u−ε,v−ε)) and Hk(M(u+ε,v+ε)) can be replaced by the groups
Hk(M(u−aε,v−(1−a)ε)), Hk(M(u+aε,v+(1−a)ε)) for any fixed a ∈ ]0, 1[ without chang-
ing the concept of normal function. In plain words, Property (4) guarantees that the
passage across a contour-arc γ along any direction (a, 1− a) just creates (s(γ) = 1)
or destroys (s(γ) = −1) exactly one homological class in degree d(γ), without pro-
ducing any homological change in the other degrees. According to [11], this implies
that the multiplicity of the points of each contour-arc is 1 in degree d(γ).

Remark 3.3. It is possible to give examples of functions f : M → R2 such that the
homological event associated with the points of a contour of f changes along the
considered contour. This justifies the choice of using the concept of contour-arc
instead of the one of contour in Property (4).

In the rest of this paper we will assume that the function f : M → R2 is normal.

3.3. The Position Theorem. We recall that

f∗
(a,b)(p) := min{a, 1 − a} · max

�
f1(p) − b

a
,
f2(p) + b

1 − a

�

for every p ∈ M . With the concept of extended Pareto grid at hand, we can state
and prove the following result, which gives a necessary condition for P to be a point

of Dgm
�
f∗
(a,b)

�
.

Theorem 3.4 (Position Theorem). Let (a, b) ∈ P(Λ+), P ∈ Dgm
�
f∗
(a,b)

�
\ {∆}.

Then, for each finite coordinate c of P a point (x, y) ∈ r(a,b)∩Γ(f) exists, such that

c = min{a,1−a}
a · (x − b) = min{a,1−a}

1−a · (y + b).

Proof. By applying Theorem 3.2 in [10] and recalling that the points of Dgm
�
f∗
(a,b)

�

are obtained by multiplying the ones of Dgm
�
f(a,b)

�
by the factor min{a, 1−a}, we

obtain that a point p ∈ M exists such that one of the following statements holds:

Figura 1.3: All the contour-arcs for the filtering function on the torus are

in red and white points are the double points deleted from Γ(f). Here are

20 contour-arcs.

rank(Hk(M(u+ε,v+ε)) = rankHk(M(u−ε,v−ε))− 1.

In plain words, Property (4) of the definition guarantees that the passage

across a contour-arc γ along any direction just creates (s(γ) = 1) or destroys

(s(γ) = −1) exactly one homological class in degree d(γ), without producing

any homological change in the other degrees. According to [1], this implies

that the multiplicity of the points of each contour-arc is 1 in degree d(γ).

Remark 1. The extended Pareto grid and the concept of normal function are

introduced in this chapter in order to focus on the purpose of this work. It

is a first step on the investigation of the genericity of the assumptions done;

it should possibly be proved that properties describing normal functions are

generic in the set of smooth maps from M to R2.



26 CAPITOLO 1. MATHEMATICAL SETTING



Capitolo 2

Main result

Definition 8. Let A be the boundary of an open subset U of Rn. The

medial axis of A is defined as follow:

Med(A) = {z ∈ Rn | ∃p, q ∈ A, p 6= q, ‖p− z‖ = ‖q − z‖ = d(z,A)}.

In plain words, the medial axis of A = ∂U represents the set of all points of

Rn having more than one closest point on A. See Figure (2.1) for an example.

Furthermore, the reach of A is the number

τA := inf
p∈A

d(p,Med(A)) = inf
z∈Med(A)

d(z,A).

In literature, the number 1/τA is also studied, called the condition number

of A.

For this definition we refer to [9].

Figura 2.1: Example of medial axis for a planar curve.

27
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Now we introduce some notations we use in what follows. Different

surfaces embedded in R3 will be considered, so for a more streamlined

notation, we will consider the restriction of the function f : R3 −→ R2,

f(p) = (x(p), z(p)), on different surfaces, instead of defining a function for

every surface we deal with. We will also use the notations JM to denote the

Jacobi set of the function f restricted to the surface M , and ΓM to denote

the extended Pareto grid of f|M .

We can describe the Jacobi set of the filtering function above with a

specific equation. Consider an open neighborhood S of the image of an arc

α :]0, 1[−→ R3 of M , such that the closure of the set f ◦α(]0, 1[) is a proper

contour, and take a parametrization of S

φ :]0, 1[×]− 1, 1[−→ S (u, v) 7→ (φ1(u, v), φ2(u, v), φ3(u, v)),

so that the filtering function f is given by (φ1, φ3), in terms of the para-

metrization. Let us also consider the path γ = (γ1, γ2) : [0, 1] → R2 that

continuously extends the path f ◦ α. We can assume that γ1 and γ2 are re-

spectively increasing and decreasing. We know that all the points of the sur-

face at which the gradients
(
∂φ1
∂u (u, v), ∂φ1∂v (u, v)

)
and

(
∂φ3
∂u (u, v), ∂φ3∂v (u, v)

)

are parallel belong to the Jacobi set. If we write this condition of parallelism

we obtain the equation:
∣∣∣∣∣
∂φ1
∂u

∂φ1
∂v

∂φ3
∂u

∂φ3
∂v

∣∣∣∣∣ = 0, i.e.
∂φ1

∂u
(u, v)

∂φ3

∂v
(u, v)− ∂φ1

∂v
(u, v)

∂φ3

∂u
(u, v) = 0. (2.1)

Furthermore, we know that the normal vector at a point φ(u, v) ∈ M

can be written as

NM (φ(u, v)) =
(∂φ2

∂u

∂φ3

∂v
− ∂φ2

∂v

∂φ3

∂u
,−∂φ1

∂u

∂φ3

∂v
+
∂φ1

∂v

∂φ3

∂u
,

∂φ1

∂u

∂φ2

∂v
− ∂φ1

∂v

∂φ2

∂u

)
(u, v).

We can choose the parametrization φ in such a way that α(u) = φ(u, 0), for

u ∈]0, 1[; it follows from (2.1) and the relation α(]0, 1[) ⊆ JM that

NM (φ(u, 0)) =

(
∂φ2

∂u

∂φ3

∂v
− ∂φ2

∂v

∂φ3

∂u
, 0,

∂φ1

∂u

∂φ2

∂v
− ∂φ1

∂v

∂φ2

∂u

)
(u, 0).

Therefore,

NM (φ(u, 0)) · (0, 1, 0) = 0.
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Figura 2.2: An example of the arc α considered on M and its neighbourhood

S.

In other words, (0, 1, 0) is a tangent vector to the surface at every point of

α(]0, 1[).

In the following proposition we will use a Fréchet-type distance, dF . We

set

dF (γ, γ′) := inf
f∈Diffeo(γ,γ′)

sup
t∈]0,1[

‖γ(t)− f(γ(t)‖

for two diffeomorphic arcs in R2, γ and γ′, and

dF (M,M ′) := inf
F∈Diffeo(M,M ′)

max
x∈M
‖x− F (x)‖.

for two diffeomorphic surfaces, M and M ′, embedded in R3.

Here, Diffeo(M,M ′), with M and M ′ smooth closed surfaces embed-

ded in R3, is the set of all diffeomorphisms from M to M ′. Analogously,

Diffeo(γ, γ′), with γ and γ′ arcs in R2 parametrized by ]0, 1[, is the set of all

diffeomorphisms between γ and γ′.
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Proposition 1. Let M ⊆ R3 be a smooth closed surface. Let ΓM be the

extended Pareto grid of the filtering function f|M (p) = (x(p), z(p)). Assume

that γ = (γ1, γ2) : [0, 1] → R2 parametrizes a proper contour of f|M , and

that γ1, γ2 are increasing and decreasing, respectively. Finally, assume that

δ ∈]0, τM [ and γ′ = (γ′1, γ
′
2) : [0, 1] −→ R2 is a smooth arc verifying the

following properties:

• γ′1 and γ′2 are respectively increasing and decreasing;

• dF (γ, γ′) < δ;

• ∂kγ1
∂tk

(0) =
∂kγ′1
∂tk

(0), ∂kγ2
∂tk

(0) =
∂kγ′2
∂tk

(0), and

∂kγ1
∂tk

(1) =
∂kγ′1
∂tk

(1), ∂kγ2
∂tk

(1) =
∂kγ′2
∂tk

(1), for every k ∈ N0.

Then there exists a smooth closed surface M ′ of R3 diffeomorphic to M such

that:

• dF (M,M ′) < δ;

• ΓM ′ = (ΓM r γ([0, 1])) ∪ γ′([0, 1]).

Proof

Let α :]0, 1[−→ R2 be a parametrization of an arc of M such that γ :

[0, 1] −→ R2 continuously extends the path f ◦α. Then, let as take an open

neighborhood S of α(]0, 1[), for which a parametrization

φ :]0, 1[×]− 1, 1[−→ S (u, v) 7→ (φ1(u, v), φ2(u, v), φ3(u, v))

exists such that α(u) = φ(u, 0) for every u ∈]0, 1[.

Now, we can consider the function s : [0, 1] −→ R that takes each value u

to the distance between the point γ(u) and the intersection of a line through

γ(u) with slope 1 and the arc γ′([0, 1]) (see Figure 2.3). It is easy to check

that the function s is smooth. We can define a smooth function r on R2 such

that r(u, 0) = s(u), for every u ∈]0, 1[, r vanishes outside of ]0, 1[×] − 1, 1[

and
∂r

∂v
(u, v) > 0, for u ∈]0, 1[ and v ∈]− 1, 0[,

∂r

∂v
(u, v) < 0, for u ∈]0, 1[ and v ∈]0, 1[.



31

Figura 2.3: Here is an example of the function used in the proof of

Proposition 1.

(In Figure 2.3 it is possible to visualize an exemplification of how the

function r is constructed).

We observe that the function r verifies the following property:

∂r

∂v
(u, 0) = 0, ∀u ∈]0, 1[. (2.2)

Let us consider a tangent vector field V on S, which extends the costant

vector field (0, 1, 0) defined along the arc α(]0, 1[). Without loss of generality,

we can assume that for ū ∈]0, 1[ the vertical segments {(ū, v) | v ∈]− 1, 1[}
are sent to the flow lines of V by the parametrization φ. In this way we have

that

∂φ

∂v
(u, 0) = λ(0, 1, 0) =⇒ ∂φ1

∂v
(u, 0) =

∂φ3

∂v
(u, 0) = 0, ∀u ∈]0, 1[. (2.3)

We can now define the smooth function

F : S −→ R3 by setting F (φ(u, v)) := φ(u, v) +
r(u, v)√

2
(1, 0, 1).

Without loosing regularity, we can extend F to M by defining F (p) = p,

∀p ∈M r S.

Let us set M ′ := F (M). Now we can corestrict F to its image so

that F : M −→ M ′ is a surjective smooth map. The injectivity of F is a

consequence of the choice of δ, taken smaller than the reach τM of M . It is

easy to check that also F−1 is smooth. Hence, F is a diffeomorphism.

It remains to prove that F (JM ) = JM ′ , this will imply that γ′ is actually

a contour of ΓM ′ . To do this we take the local parametrization
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φ′ :]0, 1[×]− 1, 1[−→M ′ φ′(u, v) = φ(u, v) +
r(u, v)√

2
(1, 0, 1).

Thanks to the characterization of the Jacobi set given above, it suffices to

see that each normal vector to M ′ at φ′(u, 0) is orthogonal to (0, 1, 0), i.e.

the second component of the normal vector must be 0. We have that

∂φ′1
∂u

(u, 0) =
∂φ1

∂u
(u, 0) +

1√
2

∂r

∂u
(u, 0);

∂φ′3
∂u

(u, 0) =
∂φ3

∂u
(u, 0) +

1√
2

∂r

∂u
(u, 0);

∂φ′1
∂v

(u, 0) =
∂φ1

∂v
(u, 0) +

1√
2

∂r

∂v
(u, 0) = 0;

∂φ′3
∂v

(u, 0) =
∂φ3

∂v
(u, 0) +

1√
2

∂r

∂v
(u, 0) = 0.

As a direct consequence of (2.2) and (2.3),
∂φ′1
∂v (u, 0) and

∂φ′3
∂v (u, 0) vanish,

and hence,

(
∂φ′1
∂u

∂φ′3
∂v
− ∂φ′3

∂u

∂φ′1
∂v

)
(u, 0) = 0 for every u ∈]0, 1[.

Therefore, NM ′(φ(u, 0) ⊥ (0, 1, 0) for u ∈]0, 1[, so that F (JM ) ⊆ JM ′ .

We can repeat the same argument for F−1, obtaining F−1(JM ′) ⊆ JM , i.e.

JM ′ ⊆ F (JM ). It follows that F (JM ) = JM ′ . This concludes our proof.
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Figura 2.4: The initial contour γ([0, 1]) and the final contour γ′([0, 1]), cor-

responding to the two diffeomorphic surfaces M and M ′. The function s is

defined as the length of the segment with endpoints γ(u) and γ′(u∗).
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Conclusions

In this thesis we have presented a geometrical framework concerning 2D

persistent homology. We have considered a filtering function f|M : M −→
R2, defined by f(p) = (x(p), z(p)), where M is a smooth closed surface

embedded in R3, and we have proved that the extended Pareto grid of f|M

can be modified by moving its proper contours. This result is expressed

in Proposition 1, where a proper contour γ([0, 1]) of f|M is fixed, and the

surface M is modified in order to obtain a new smooth closed surface M ′,

diffeomorphic to the previous one, such that the extended Pareto grid ΓM ′

equals ΓM except for the contour γ([0, 1]) which is replaced with a given

contour γ′([0, 1]).

In our view, the tool here developed could be used to make a first step

in the direction of proving that the property of being normal is generic

for regular filtering functions from M to R2. However, it is important to

notice that our mathematical framework is particular, since it just refers

to smooth closed surfaces embedded in R3 and endowed with the filtering

function (x, z). We would like to extend our study by proving an analogous

result for any regular filtering function defined on a closed regular surface.

For this purpose, new ideas will be likely needed.
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