Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (17MB) |
|
Documento PDF (Supplementary file)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (25MB) |
Abstract
Nowadays, there is agreement in the scientific community that active galaxies are actually normal galaxies that they experience periodically a phase of nuclear activity, due to gas accretion on central massive black hole. As a consequence, AGN feedback study has increased in recent years with the aim of shedding light on its role in the galaxy evolution framework. From a theoretical perspective, many works have been made on this phenomenon, in particular hydrodynamical simulations, which try to "catch" AGN feedback as a physical process and its impact on galaxy evolution. There are two types of feedback from AGN, one is the \textit{mechanical} feedback, and the other is the \textit{radiative} feedback. Because of the difficulty to simulate the radiative AGN feedback phenomenon, both for its intrinsic complexity and the arduous task of its implementation in hydro codes, many works take into account just the mechanical AGN feedback. The aim of this work is to realize a new modeling of radiative transfer consistent with the AGN feedback process in elliptical galaxies. We have studied this model accurately from an analytical perspective, and we have shown its main properties; after that we have tested it in post-processing, using temperature and density maps from high resolution hydrodynamical simulations, in which we have considered the absorption of the medium due to photoionization and dust. Dust is important because it absorbs radiation differently with the change of wavelength. Finally, we have compared our model with another present in the literature. We have found that this new radiative transport model can be used both to directly treat the AGN feedback problem, and also as a benchmark for other algorithms, which are faster from a numerical point of view, and that aim to treat the AGN feedback problem.