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Abstract

Nowadays, there is agreement in the scientific community that active galaxies are actually
normal galaxies that they experience periodically a phase of nuclear activity, due to gas
accretion on central massive black hole. As a consequence, AGN feedback study has
increased in recent years with the aim of shedding light on its role in the galaxy evolution
framework.

From a theoretical perspective, many works have been made on this phenomenon, in
particular hydrodynamical simulations, which try to "catch" AGN feedback as a physical
process and its impact on galaxy evolution. There are two types of feedback from AGN,
one is the mechanical feedback, and the other is the radiative feedback. Because of
the difficulty to simulate the radiative AGN feedback phenomenon, both for its intrinsic
complexity and the arduous task of its implementation in hydro codes, many works take
into account just the mechanical AGN feedback.

The aim of this work is to realize a new modeling of radiative transfer consistent with
the AGN feedback process in elliptical galaxies. We have studied this model accurately
from an analytical perspective, and we have shown its main properties; after that we
have tested it in post-processing, using temperature and density maps from high reso-
lution hydrodynamical simulations, in which we have considered the absorption of the
medium due to photoionization and dust. Dust is important because it absorbs radiation
differently with the change of wavelength. Finally, we have compared our model with
another present in the literature.

We have found that this new radiative transport model can be used both to directly
treat the AGN feedback problem, and also as a benchmark for other algorithms, which
are faster from a numerical point of view, and that aim to treat the AGN feedback
problem.
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Sommario

Un’idea oggi accettata dalla comunità scientifica, è che le galassie attive siano delle
galassie "normali" che periodicamente, per un periodo limitato, entrano in una fase di
attività nucleare (AGN), dovuta all’accrescimento di gas da parte del loro buco nero
massiccio centrale. Di conseguenza, lo studio del fenomeno di AGN feedback si è inten-
sificato molto in questi ultimi anni, con l’obiettivo di fare chiarezza sul ruolo dell’AGN
feedback nell’evoluzione delle galassie.

Dal punto di vista teorico sono stati fatti molti lavori a proposito, in particolare
simulazioni idrodinamiche, in quanto cercano di "catturare" il fenomeno fisico di AGN
feedback e anche l’impatto che questo ha sull’evoluzione globale delle galassie.Esistono
due tipi di feedback, quello meccanico e quello radiativo. Data la difficoltà di sim-
ulare l’AGN feedback radiativo a causa della complessità del fenomeno fisico in se e
dell’implementazione numerica in codici idrodinamici, nella maggior parte dei lavori si è
tenuto conto principalmente del Feedback meccanico da AGN.

Lo scopo di questo lavoro è stato quello di trovare un nuovo modellamento del
trasporto radiativo consistente con il fenomeno di AGN feedback in galassie ellittiche.
Abbiamo studiato questo modello rigorosamente da un punto di vista analitico deline-
andone le caratteristiche principali, dopodichè lo abbiamo testato in post-processing su
mappe di temperatura e densità, output di simulazioni idrodinamiche ad alta risoluzione,
tenendo conto dell’assorbimento dovuto a processi di ionizzazione e da parte della pol-
vere. La polvere è importante perchè assorbe la radiazione in maniera differente al variare
della lunghezza d’onda. Lo abbiamo infine confrontato con un altro modello presente in
letteratura, creato anch’esso per essere applicato al problema di AGN feedback radiativo.

Abbiamo trovato che questo nuovo modellamento di trasporto radiativo può essere
utilizzato sia per trattare direttamente il problema di AGN feedback in maniera consis-
tente, sia come banco di prova di altri algoritmi, più veloci da un punto di vista numerico,
che si prefiggono di trattare lo stesso problema.
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Chapter 1
Introduction

Until recently, astronomers thought that normal galaxies and quasars were two different
astrophysical objects. It has been realized over the past decades that the central MBH
(Massive Black Hole) that habits the center of most galaxies, is not just a peddling
ornament of the host galaxy, but it is the link between normal galaxies and quasars.
Furthermore, it seems that the central MBH may play a leading role in galaxy evolution,
and it appears that it has a role also in determining the main observational properties.

The process by which this occurs is known as AGN (active galactic nuclei) feedback,
and it takes place through an interaction between the energy and radiation generated by
accretion onto the massive black hole and the gas in the host galaxy.

In this introduction we are going to present briefly the role of AGN feedback as it
appears from observations and numerical simulations; then we will focus on the impor-
tance of the Radiative Feedback of AGN (and the difficulty of modeling it). Finally, we
will show the outline of this work.
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2 Introduction

1.1 Observational Evidence of AGN feedback

Many elliptical galaxies contain central MBHs, and also contain substantial amounts
of hot gas (106 − 107 K) capable of accreting onto the central MBH as a result of
having cooling times that are short compared to the Hubble time. These MBHs have
an intriguing relationship with the host galaxies, which is witnessed by observations and
theoretical works. One of the most important of these relations is the Magorrian Relation
(Magorrian et al. 1998), that links the mass of the central MBH with the mass of the
stellar spheroid in which it lives (Fig. 1.1). When we say "stellar spheroid" we mean

Figure 1.1: Correlations (a) between V-band stellar mass-to-light ratio Υ and bulge
luminosity L and (b) between MDO (Massive Dark Object) mass MBH and Mbulge. The
filled and open circles plot power-law and core galaxies, respectively. The error bars give
the 68% confidence intervals on Υ and MBH (from Magorrian et al. 1998).

the bulge, if we are talking about disc galaxies, or the whole mass stellar content of
early-type galaxies.

This scenario has been confirmed with the discovery of a new scaling law of MBH and
their host galaxies, because of the increase of telescopes accuracy and the large amount
of new data: the popular M − σ relation. This law was independently discovered and
announced at the Spring 2000 meeting of the American Astronomical Society by Geb-
hardt (see Gebhardt, Bender, et al. 2000) and by Ferrarese, and published by Ferrarese
(Ferrarese and Merritt 2000) and by Gebhardt (Gebhardt, Richstone, et al. 2000). Thus,
in the latter two decades astronomers were convinced by observations (Fabian 2012) that
in every normal galaxies resides a MBH, and this may be the link between AGN and
normal galaxies. So, the typical morphology of today galaxies, such as the "dead and
boring red objects" known as elliptical galaxies (from Ciotti 2009) can be produced by
episodic AGN bursts. However, we have to understand if the central MBH can affect the
evolution of the host galaxy.
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Figure 1.2: BH mass vs the central velocity dispersion σc of the host elliptical galaxy
or bulge (filled circles) or the rms velocity vrms measured at one-fourth of the effective
radius (open circles). Crosses represent lower limits in vrms. The solid and dashed lines
are the best linear fits using σc and vrms, respectively (Ferrarese and Merritt 2000).

The volume occupied by the central MBH is ∼ 1027 smaller than the whole galaxy,
so can the MBH drive the evolution and modify the environment in which it lives, the
host galaxy?

It is quite easy to demonstrate that the growth of the central MBH by accretion can
have a profound effect on its host galaxy. To answer this question, we can compare the
binding energy of the galaxy:

Egal ≈M?σ
2 (1.1)

with the energy released by the growth of the black hole:

EBH ≈ εMBHc
2 , (1.2)

where M? is the stellar mass of the galaxy, σ is the central velocity dispersion of the
stars, ε is the radiative electromagnetic efficiency, MBH is the MBH mass and c is the
speed o light.

From Fig. 1.1 we can see that MBH ≈ 1.4 · 10−3M? (Kormendy and Ho 2013),
assuming a radiative electromagnetic efficiency for the accretion process of 10% (ε = 0.1),



4 Introduction

then the ratio between these energies is:

EBH
Egal

=
ε · 1.4 · 10−3M?c

2

M?σ2
(1.3)

that becomes:

EBH
Egal

≈ 1.4 · 10−4

(
c

σ

)2

, (1.4)

that says us how much the energy associated with the MBH is important compared to
the binding energy of the galaxy.
Most galaxies have σ < 400km/s, so we obtain that EBH

Egal
> 80: the energy produced by

the growth of the black hole exceeds the binding energy by a large factor. If even a small
fraction of the energy can be transferred to the gas, then an AGN can have a profound
effect on the evolution of its host galaxy.

There are principally two regimes in which the MBH accretes mass from around itself,
that are called radiative mode (knowing also as quasar) and kinetic mode (also known
as the radio jet, or maintenance mode.), which are quite different from each other. The
radiative mode operates in a typical bulge when the accreting black hole luminosity is
close to the Eddington limit, which is given by:

LEdd =
4πGMBHmpc

σT
. (1.5)

The 1.5 refers to a pure ionized hydrogen gas, where G is the gravitational constant,
MBH is the MBH mass, mp is the proton mass and σT is the Thomson cross-section,
defined by the Thomson scattering. If we substitute the constant quantities in the 1.5,
then we obtain:

LEdd ' 3.2 · 104

(
MBH

M�

)
L� = 1.26 · 1038

(
MBH

M�

)
erg/s , (1.6)

and this says us that to have a luminosity of the order of quasar luminosity ∼ 1046erg/s,
we must have a MBH with a mass of at least ∼ 108M�, which is consistent with the
MBHs that reside at the center of galaxies (Fig. 1.1 , Fig. 1.2).

The massive galaxies at the centre of groups and clusters are often surrounded by
gas with a radiative cooling time short enough that a cooling flow should be taking
place (Fabian 1994). We have that in the central region of galaxy clusters there is a huge
amount of radiation in the X-rays, which indicates a large radiative loss and mass cooling
rates of tens, hundreds or even thousands of M�yr−1:

Ṁ =
2

5

Lµm

kT
(1.7)
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where µm is the mean mass per particle of the gas with temperature T , and L is the
luminosity (mostly emitted in the X-ray band). These short cooling times, due to high
gas density (the cooling goes as ∼ ρ2, where ρ is the density), in these massive galaxies
sometimes are good to establish an accretion of gas with a low value of L/LEdd, thus,
a kinetic mode, in which we can have also the formation of radio jets; this is the way
kinetic accretion works.
Another phenomenon that provides a large amount of gas falling onto the central MBH is
merging. Interactions and mergers can strongly affect galaxy evolution. Since the early
studies by A. Toomre and J. Toomre (1972), it is generally believed that interactions
can trigger starburst processes in galaxies, via tidal effects. The fact that interacting
galaxies are more luminous in the far infrared (FIR) (e.g. Sanders and Mirabel 1996)
and in the radio band (e.g. Hummel 1981), and that they have larger Hα equivalent
widths (e.g. Kennicutt et al. 1987) supports this hypothesis. The star formation (SF) is
found to be stronger in the nucleus, although it is also enhanced in the disc. A widely
accepted idea, supported by simulations, is that galaxy interactions induce flows of gas
from the outer parts of the galaxy and/or the companion into the inner regions through
loss of the angular momentum induced by tidal forces and then, trigger nuclear activity.
Furthermore, many astronomer have found that quasar host galaxies show distorted
morphologies, reminiscent of past merging events (e.g. Bahcall et al. 1997). In Fig. 1.3
we can see some example.
Nevertheless, other found no evidence of past interactions (e.g.Dunlop et al. 2003) in

QSOs, so probably merging is not the only phenomenon that can trigger accretion onto
MBH.

However, it is not clear if the fraction of AGN host galaxies undergoing interactions
is really larger than the fraction of inactive galaxies undergoing interactions, but we can
say that merging is a physics process that may provide gas accretion in the central region
of galaxies, and then trigger nuclear activity.

Other physical processes that can pile up gas in the central region of galaxies are
the so-called "secular processes", that can have both external and internal origin. With
external origin we mean a slow and continuous external matter accretion, with typical
structures such as streams or halos (known also as hot and cold mode accretion). For
isolated AGN we have that the only source of gas is the mass loss from evolving stars. So
also for isolated galaxies, we know that the recycled gas from dying stars is an important
source of fuel for the central MBH, even in absence of external phenomena such as
galaxy merging, that are often advocated as the way to induce QSO activity (Ciotti and
Ostriker 1997, Ciotti and Ostriker 2001, Ciotti and Ostriker 2007, Ostriker et al. 2010,
Ciotti, Ostriker, and Proga 2010, Ciotti, Pellegrini, et al. 2017).

In Fig. 1.4 we have a summary of various accretion modes and the conditions in
which these may take place.
There are a lot of observational evidence of the importance of AGN feedback in massive
galaxies, groups and clusters. At large scale (∼ 1Mpc) powerful jets can trigger the
evolution of the hot ICM (Intra Cluster Medium), modifying its content of gas and its
metal distribution, because of it can have a positive feedback on ISM of host galaxy and
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Figure 1.3: These images show the optical counterparts of several AGN detected by
the Swift BAT Hard X-ray Survey. The galaxy shapes are either physically intertwined
or distorted by the gravity of nearby neighbors. The active black holes (circled) were
known prior to the Swift survey, but Swift has found dozens of new AGN in more distant
galaxies.

start up star formation, which enriches the gas with metal via SNe (and eventually, they
also expels the gas out of the galaxy and so in the ICM).Galaxy clusters and groups are
a perfect laboratory to study also the past AGN events from the cD (central Dominant)
galaxy for example, and also the feedback on the ICM.
As we can see in the Perseus Cluster in Fig. 1.5 from Fabian et al. (2006), there
are a lot of "disturbances" on the ICM caused by AGN feedback from the central galaxy
(NGC 1275): we can see shock front, cavities and probably the more interesting, smoking
gun of past AGN activity, the so-called ghost bubbles (which vaguely remember the air
bubbles of the divers when they go back to the surface of the water and become pancake-
shaped). These are probably the best evidence of AGN feedback; the presence of these
ghost bubbles and cavities can be a confirmation of the fact that AGN actually is an
episodic phenomenon, and it switch on and off repeatedly over cosmic time.

Similar studies have been made for M87 Galaxy, in which we can see shock fronts,
and also cavities produced by present AGN activity (Fig. 1.6).

In our work we will focus on accretion and feedback in elliptical galaxies generated
by internal secular processes (primarily accretion of mass internally produced by stellar
evolution, for example through red giant winds and planetary nebulae). In this case we
have not taken in consideration the formation of jets, but we have taken in consideration
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Figure 1.4: Schematic diagrams to illustrate the large-scale processes that are thought
to be responsible for triggering AGN activity: major mergers of gas-rich galaxies, secular
evolution (which includes both internal secular evolution and external secular evolution,
the latter of which is driven by galaxy interactions), and hot halo accretion, which is
presumed to be the dominatnt MBH growth mode for radio-loud AGNs (from Alexander
and Hickox 2012).

the mechanical feedback due to the strong wind formed by the inflowing gas which is not
consumed by SF or accreted on MBH. As gas is used up or blown away, a hot cavity is
formed at the center of the system and, since a shock has propagated through that vol-
ume, it is essentially like a giant supernova remnant and one expects there to be particle
acceleration and non-thermal radiation from the central region. Then, gradually this hot
bubble cools and collapses and one returns to the normal elliptical, more or less in a
quiescent phase. This wind comes from the Broad Line Region (BLR) of quasars: this is
suggested by The outflow is evident in ultraviolet Civ and Siiv absorption lines with ve-
locity shifts v ∼ 26, 300 km/s (Hamann et al. 2008). Generally, Broad Absorption Lines
(BALs) in ultraviolet (UV) and X-Ray spectra of quasars are the main manifestation for
such outflows, with velocities that can reach ∼ 0.2c. Many observations show that AGN
winds can be very complex flows, and neither spherical nor axial symmetry is applicable.

The structure, dynamics and evolution of a wind can be described by the equations
of radiation magnetohydrodynamics. Possible wind driving mechanisms can be identified
by three mechanisms: Thermal Driving, Radiation Pressure Driving, Magnetic Driving.
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Figure 1.5: Unsharp mask image (with Chandra) made from the whole 0.3−7 keV band
by subtracting an image smoothed with a Gaussian of dispersion 10 arcsec from one
smoothed by 1 arcsec and dividing by the sum of the two images. Various features are
labelled in the lower contrast image at the left-hand side (from Fabian et al. 2006).

Figure 1.6: (a) M87 galaxy with its AGN jet shocking gas around it. (b) Radio lobes
of the AGN (red) seen alongside x-ray ICM gas (blue), a clear signature of quantitative
AGN feedback. From Fabian (2012).

Probably, as is often the case, it is not just one mechanism that drives the formation of
these winds, but rather can be a combination of all these mechanisms, which can occur
at different evolutionary stages of AGNs or in different places in the core of galaxies.
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As first revealed by Einstein observations and deepened by Chandra and XMM-
Newton, normal elliptical galaxies, both isolated or in groups and clusters, can show a
significant emission in the 0.5−4.5 keV , ranging from 1039 to 1042 ergs−1. This emission
is associated with hot gaseous halos within the galaxies, containingMgas ≈ 108−1011M�
(Fabbiano 1989). As shown by L. Ciotti and J.P. Ostriker in their series of papers, cooling
flows and quasars can be different aspect of the same phenomenon (Ciotti and Ostriker
1997, Ciotti and Ostriker 2001, Ciotti and Ostriker 2007, Ostriker et al. 2010, Ciotti,
Ostriker, and Proga 2010, Ciotti, Pellegrini, et al. 2017).
In this view, energy output (which can be either or both of radiative and mechanical)
from the central MBH pushes matter out, the accretion rate drops precipitously and the
expanding matter drives shocks into the galactic gas. As a consequence, the resulting hot
bubble cools down via thermal processes (mainly bremsstrahlung cooling) and the con-
sequent infall leads to renewed accretion and back to zero, the cycle repeats (Ciotti and
Ostriker 2007). Moreover, AGN outbursts can trigger star formation (positive feedback)
compressing cold dense clouds (which are near their Jeans or Bonnor-Ebert mass); this
may pollute the early-type spectrum with the radiation of the new stars and as a con-
sequence, we can see the E+A spectrum of some "normal" elliptical galaxies. In Fig.1.7
we can see a sum up of the elliptical galaxies - AGN life cycle, from Ciotti, Ostriker, and
Proga (2010).
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Figure 1.7: Four main phases of the feedback cycle in the life of a galaxy. Secondary gas
from stellar evolution leads to a cooling-flow thermal instability that feeds a central MBH,
the outbursts from which leads to an expanding hot bubble which terminates the inflow.
The cycle may be repeated several times, and in each box there are the characteristic
duty-cycle (fduty) associated with each phase in a standard simulation. For detail see
Ciotti, Ostriker, and Proga (2010).
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1.2 Purpose of the Thesis

As we have seen in section 1.1, we do not need to invoke external processes, such as
merging, in order to obtain quasar activity. In our study we take into account the
evolution of an isolated elliptical galaxy,where its old stellar population evolving passively
enriches the ISM with recycled gas (mass loss of red giants, planetary nebulae, SNe Ia).
Cooling processes due to thermal instability of the hot halo (thermalized by the stellar
motions and SNe Ia), cause the accretion on the central MBH which allows the galaxy
to become an active galaxy.

These accretion events make the galactic nucleus very bright; it can reach L ∼
LEdd erg/s and become a quasar. The luminosity of these astrophysical objects can
reach L ∼ 1048 (the so-called high luminosity quasars), and this huge amount of radia-
tion can have a great impact on the environment in which it lives.

As well known, radiation can interact with matter in very different ways. One of
the biggest complication with the study of radiative transfer in astrophysical problems
is to understand how the radiation interacts with the interstellar medium. The first
complication is with the time scale of the system involving radiation and matter; the
time scale variation of radiation is the speed of light c, whereas for the ISM we have that
the time scale variation is the sound speed cs which is, in the isothermal regime, given by:

cs =

√(
∂P

∂ρ

)
T

=

√
kBT

µmp
(1.8)

whereas in the adiabatic regime the sound speed is:

cs =

√(
∂P

∂ρ

)
S

=

√
γ
kBT

µmp
(1.9)

where γ =
Cp
Cv

and Cp is the specific heat at constant pressure, Cv is the specific heat at
constant volume, kB is the Boltzmann constant and T is the gas temperature.

For the typical range of temperature of the ISM, which ranges from 10 K to 107 K
we have that the sound speed spreads from ∼ 3 · 104 cms−1 to ∼ 3 · 107 cms−1, with
very little differences between the adiabatic and the isothermal cases. So we have that
the ratio beteewn the time scales is c

cs
≈ 103−106, which is very high. From a numerical

perspective, we can work just with the time scale computed with the speed of sound,
because it is greather than that computed with the speed of light, but we have to be
careful about it because, on the other hand, astrophysical distances are huge compared
also with the speed of light: if we take a typical radius of elliptical galaxies Rg ∼ 100 Kpc,
we have that a photon which starts from its centre takes a time of about Rg

c ≈ 105yr to
go through the whole galaxy, in a totally optically thin regime (in which photons react
very little with the interstellar medium); as a consequence, on one hand we have that
the light reacts quickly with the medium in whitch it propagates, but on the other hand
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we have that from the moment the photon begins its path from the central region to the
external one, the hydrodynamics changes.

From a numerical perspective, some approximations are needed, because we cannot
work with an integration time-step computed with the speed of light: one choice for
this approximation is to solve all of the radiative transfer equations assuming a steady
state, therefore, the radiation field is considered to reach equilibrium instantaneously,
and radiative forces are considered to act instantaneously in the whole galaxy. This is
the approximation that we have also used in this work.

We want to study radiative transfer in a medium which can scatter, absorb and re-
emit, and so we have other problems, in addition to the problem related to the time-step
integration: we want to solve the radiation field on the whole integration domain, but we
do not know the functional form of radiation field in advance; in addition, we have that
the change of a "ray of light" in one position of the domain due to the characteristic of
the medium (it can subtract, add or scatter photons), does not change just this ray, but
has an impact on all the radiation field. Furthermore, if we want to be strict on treating
radiative transfer, the interaction of the radiation field with matter has an impact directly
on the medium, so it can changes density, coefficient absorption, and so on. In Fig. 1.8
we can see the complexity of the medium in which radiation propagates.

If we want to treat radiative transfer in dusty media, it gets more tricky: dust is
one of the most important constituents of the interstellar medium (ISM). By mass it
is only a small fraction: somewhere between 1% and 2%, but it has a great impact on
the evolution of radiation field. From a chemical perspective dust grains are important
because they have surfaces on which chemical reactions can take place much easier than
in the gas phase. From a radiative transfer perspective they are important because they
have strong continuum opacities. Furthermore, this opacity changes with the variation of
the electromagnetic spectrum wavelength, and are thus much more capable of affecting
radiative heat transfer than gas opacities. Moreover, dust extinction can “protect” certain
regions of the interstellar medium from ultraviolet photons, thus enabling molecules to
form in those regions. Finally, dust absorbs radiation in some wavelengths, and it re-emits
this radiation at other wavelengths (not necessarily isotropically).



Purpose of the Thesis 13

Figure 1.8: Top row: radial velocity field, in kms−1; Central row: density field in cm−3;
bottom row: temperature field in K. There are four representative times in correspon-
dance with an outburst at 6.85 Gyr. From left to right: t = 6.84 Gyr , t = 6.85 Gyr,
t = 6.86 Gyr and t = 6.95 Gyr. For detail see Ciotti, Pellegrini, et al. (2017).
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The purpose of this thesis is to proceed towards a deeper understanding of radiative
transfer in elliptical galaxies, in order to unveil the importance of radiative AGN feedback
in galaxy evolution, its impact on the interstellar medium, and its role in determining
the accreted mass on the central MBH.
The thesis is composed mainly by two parts:

In the first one we will show the analytical study of radiative transfer, and we will
derive the moment equations for two different choices of the specific intensity function.
We will show in detail the main equations of these models, which we will call D Model
and AD Model. After that we will show the main differences between these models, both
analytical and physical, and we will discuss the main implications of the uses of them.

In the second part we will investigate the physics of the ISM of Early-type Galaxies.
Thus, we will study the impact on ISM by radiative AGN feedback, applying the D and
the AD Models. We will show a detailed post processing study of the output hydro
simulation (Ciotti, Pellegrini, et al. 2017), in which the radiative heating of ISM is firstly
modelled by photoionization and transition line heating of partially ionized clouds; after
that, we will add the presence of dust which absorbs radiation in UV and Optical bands.
In the last section we will compare the AD Model with model used in Novak et al. (2012),
that we will call N12 Model.

Finally we will discuss the pro and contra of the two models of radiative transfer, in
the situations with and without dust.



Chapter 2
Radiative Transfer Modeling

2.1 Basics on Radiative Transfer
(Radiative transfer, S. Chandrasekhar (1950))

To set up the conditions of any problem concerning radiative transfer, we have to de-
fine some fundamental quantities (without losing generality, in this section we consider
Cartesian coordinates):

We consider the radiant energy dEν in a specific frequency interval (ν, ν + dν) which is

Figure 2.1: A "pencil of radiation".

transported across the area element dS and with a direction confined into the solid angle
dΩ, during a time dt. This energy is expressed in terms of Specific Intensity Iν , which is
given by

15
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dEν = Iν cos θdνdSdΩdt (2.1)

where θ is the angle whose direction is within the outward normal ns to dS. The specific
intensity thus defined is always def > 0. If we want to be mathematically strict we
should write the 2.1 in the integral form, since dE is not a differential but it is a finite
quantity of energy, and therefore greater than zero.

If we are in a medium which absorbs, emits and scatters radiation, Iν can be expected
to vary from point to point, from time to time and also with the direction through every
point. Thus, we can write Iν in Cartesian coordinates as:

Iν ≡ Iν(x,n, t) (2.2)

where x = (x, y, z) defines the point and n = (l,m, n) defines the direction cosines of
the direction to which Iν refers.

In the 2.1 there is also dt, which implies the dependence on time: if we wanted to
study this time-dependent problem we should write the relativistic equations for Iν , and
therefore they have to be Lorentz-invariant, since Iν is generated by particles (photons)
which travel at the speed of light.

In this work we study the stationary problem of radiative transfer applied to AGN feedback.
We stress that we neglect the propagation time of photons which leave the central MBH
to go outwards, because the light crossing time of the galaxy is by far the shortest time-
scale of the system, so we can write the 2.2 as:

Iν ≡ Iν(x,n) (2.3)

In other words, when the central source becomes luminous, photons propagate instanta-
neously in the whole galaxy. Moreover, if the specific intensity is independent of direction
in a point, the radiation field is said isotropic in that point, and if it is the same for any
point, the radiation field is said homogeneous and isotropic.

We call the Integrated Intensity I the specific intensity integrated over all the fre-
quencies:

∫∞
0 Iνdν. The net flow in all directions is therefore given by:

dνdSdt

∫
Iν cos θdΩ (2.4)

where the integration is over all solid angles. The quantity

Fν =
1

π

∫
Iν cos θdΩ (2.5)

is called Net Flux and it defines the rate of radiant energy flow across dS per unit area and
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in the interval (ν, ν+dν). Also Fν depends on the direction of the outward normal to the
elementary surface across which the flow has been considered; however, this dependence
of the flux on direction is simple and it has vectorial nature.
We now define the amount of radiant energy per unit volume, in the frequency interval
(ν, ν+dν) at any given point, as the energy density, uνdν. As for the integrated intensity,
for the energy density we can also define:

u =

∫ ∞
0

uνdν =
1

c

∫
IdΩ (2.6)

It is often convenient to introduce the average intensity :

Jν =
1

4π

∫
IνdΩ (2.7)

which is related to the energy density by:

uν =
4π

c
Jν (2.8)

where c is the speed of light. If the specific intensity Iν after traversing a thickness dl in
the direction of its propagation becomes Iν + dIν , then we can write:

dIν
Iν

= −κνρdl (2.9)

where ρ is the density of the medium and κν is defined as the mass absorption coefficient
for radiation of frequency ν, and it is always positive. As it can be seen from the negative
sign, dIν is always negative, thus if the radiation passes through an absorbing medium,
the radiation will be always absorbed; however, this quantity can reappear in other
directions as scattered radiation. Thus, we must distinguish between true absorption
(κα) and scattering (κs).

The quantity on the right member of 2.9 gives the optical depth τ , which is a pure
number, that is defined as:

τ(s, s+ ds) =

∫ s+ds

s
κ(s′)ρ(s′)ds′ . (2.10)

If the medium is optically thin (τ < 1), the light we will not is absorbed to much; if
the medium is optically thick (τ > 1), photons are absorbed and re-emitted from the
medium, as happens in stellar interiors.
As mentioned above, a medium can absorb, scatter, but it can also emit, so we have to
define a source term of a general medium with a density ρ.
We define the emission coefficient jν , such that the amount of radiant energy is given by

dEem = jνdmdΩdνdt (2.11)
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which says that an element of mass dm emits this energy in a direction confined to an
element of solid angle dΩ, in the frequency interval (ν, ν + dν) and in a time dt.

Now we have all terms which play a role in the fundamental equation of radiative
transfer: the source terms (that include the "very" source terms, but also the "scatter-
ing" source terms) and the absorption terms:

< ∇xI,n >= ε+ ρκsJ − ρ(κα + κs)I (2.12)

where ε+ ρκsJ are the source terms, and ρ(κα + κs)I is the absorption term.
Moreover, we have some terms which behave like source and absorption terms dif-

ferently: as we have seen before, the ρκαI term absorbs the intensity as written in 2.9;
also the ρκsI is an absorption term, but the intensity of radiation which interacts with
the medium is not really absorbed, but it is scattered isotropically. Finally the ρκsJ
is a source term, because it takes the specific intensity which is scattered from all the
directions (precisely, J in 2.7) and that is added in the direction in which we are looking.
To conclude, we will use the 2.12 in curvilinear coordinates (A.16), therefore in spherical
coordinates, as shown in appendix A[

d

dλ
I(r + λn,n)

]
λ=0

= µ
∂I

∂r
+

1− µ2

r

∂I

∂µ
(2.13)

and therefore we finally obtain:

µ
∂I

∂r
+

1− µ2

r

∂I

∂µ
= ρκsJ − ρ(κα + κs)I + ε . (2.14)

The same result can be found in Radiative Transfer, S. Chandrasekhar (1950), where
µ = cos θ and r is the radius.
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2.2 The Radiative Transfer equations

We have derived the (strict) radiative transfer equation in curvilinear spherical coordi-
nates.

µ
∂I

∂r
+

1− µ2

r

∂I

∂µ
= −ρ(κα + κs)I + ρκsJ + ε (2.15)

To find a solution for this equation we have to make a guess for the specific intensity
function I(r, µ); we can start from the Eddington Approximation, which tells us that:

I(r, µ) = A(r) + µB(r) . (2.16)

In this case I is composed by two terms: A(r) is the isotropic term, and µB(r) is
the mildly anisotropic term. This approximation is commonly adopted for the stellar
interiors. In the stellar interior the medium is always optically thick for all photons from
the centre to the photosphere, while the ISM of an ETG is generally in the optically thin
regime, then we have to add a term which can quantify the opposite limit to A(r), when
the radiation field is highly directed (then, in the optically thin regime).
So doing the 2.16 becomes:

I(r, µ) = A(r) + µB(r) +D(r)δ(µ− 1) (2.17)

The additional term D(r)δ(µ − 1) allows us to describe the central point-like quasar
dominant for the radiation field where the specific intensity resembles that of a point
source (the central MBH).
Now we take the moments in µ of order 0, 1 and 2 of I:

J ≡ 1

4π

∫ 2π

0
dφ

∫ 1

−1
I(µ, φ)dµ = A+

D

4
(2.18)

F ≡
∫ 2π

0
dφ

∫ 1

−1
µI(µ, φ)dµ =

4πB

3
+ πD (2.19)

P ≡ 1

c

∫ 2π

0
dφ

∫ 1

−1
µ2I(µ, φ)dµ =

4πA

3c
+
πD

c
(2.20)

and these are respectively the mean intensity, the net energy flux and the radiation
pressure.We have taken the delta functions appearing at the edge of the integration
domain to be equal to one-half in the above equations.

In the following we will derive the equations which can approximate the two asymp-
totic limits A and D (in other words, A, B and D tell us in which regime the medium is
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for the radiation field) and, possibly, the intermediate regimes.
First we start taking the 2.15 and integrating it in dΩ one has:

∫
Ω
µ
∂I

∂r
dΩ +

∫
Ω

1− µ2

r

∂I

∂µ
dΩ = −

∫
Ω
ρ(κα + κs)IdΩ +

∫
Ω
ρκsJdΩ +

∫
Ω
εdΩ (2.21)

Integrating one by one all the terms of 2.21, then we have that the first term on the left
member is ∫

Ω
µ
∂I

∂r
dΩ =

∂

∂r

∫ 1

−1
µI(µ, φ)dµ =

∂F

∂r
(2.22)

and the second term on the left member, integrating by parts, is:∫
Ω

1− µ2

r

∂I

∂µ
dΩ =

1

r

∫ 2π

0
dφ

([
(1− µ2)I

]+1

−1

−
∫ 1

−1
−2µIdµ

)
=

2

r
F . (2.23)

We proceed on the right member, where the first term becomes

−
∫

Ω
ρ(κα + κs)IdΩ = −ρ(κα + κs)

∫ 2π

0
dφ

∫ 1

−1
I(µ, φ)dµ = −4πρ(κα + κs)J (2.24)

and the second one is: ∫
Ω
ρκsJdΩ = 4πρκsJ (2.25)

and finally the last term is: ∫
Ω
εdΩ = 4πε = Ė . (2.26)

We can simplify the right member

−4π(ρκαJ − ρκsJ + ρκsJ) + Ė = −4πρκαJ + Ė (2.27)

and in conclusion equation 2.21 becomes:

∂F

∂r
= −2

r
F − 4πρκαJ + Ė . (2.28)

Considering that

∂F

∂r
+

2

r
F =

1

r2
(
∂r2F

∂r
) , (2.29)
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we can rewrite the 2.28 as:

1

r2
(
∂r2F

∂r
) = −4πρκαJ + Ė . (2.30)

Using the relation between flux and luminosity in spherical symmetry:

F =
L

4πr2
(2.31)

we finally have

dL

dr
= 4πr2(Ė − 4πρκαJ) (2.32)

where the "∂" has become "d" in the derivative because L (and so also F ) depends
just on the radius r. The 2.28 and the 2.30 represent respectively how the flux and the
luminosity vary while they’re crossing the galaxy, our first equation to set up the problem
of radiative transfer.
Next we take again the radiative transfer equation (2.15), we multiply it for µ and we
integrate it in dΩ, as we did before to obtain the 2.28:

∫
Ω
µ2∂I

∂r
dΩ +

∫
Ω

µ− µ3

r

∂I

∂µ
dΩ = −

∫
Ω
µρ(κα+κs)IdΩ +

∫
Ω
µρκsJdΩ +

∫
Ω
µεdΩ (2.33)

We integrate the whole equation (2.33), from the first term on the left member:∫
Ω
µ2∂I

∂r
dΩ =

∂

∂r

∫ 2π

0
dφ

∫ 1

−1
µ2I(µ, φ)dµ =

∂P

∂r
, (2.34)

now taking the second term on the left member:

1

c

∫
Ω

µ− µ3

r

∂I

∂µ
dΩ =

1

rc

∫ 2π

0
dφ

([
(µ− µ3)I

]+1

−1

−
∫

(1− 3µ2)Idµ

)
, (2.35)

and integrating it by parts we have:

1

rc

∫ 2π

0
dφ

(
−
∫
Idµ+ 3

∫
µ2Idµ

)
= −4πJ

rc
+

3P

r
. (2.36)

We integrate the first term on the right member:

−1

c

∫
Ω
µρ(κα + κs)IdΩ = −ρ(κα + κs)

c

∫ 2π

0
dφ

∫ 1

−1
µIdµ = −ρ(κα + κs)F

c
, (2.37)
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and finally we show that the last two terms on the right vanish:

1

c

∫
Ω
µρκsJdΩ =

1

c

∫ 2π

0
dφ

∫ 1

−1
µρκsJdµ = 0 , (2.38)

because J does not depend on µ, and

1

c

∫
Ω
µεdΩ =

1

c

∫ 2π

0
dφ

∫ 1

−1
µεdµ = 0 , (2.39)

because ε is isotropic. In the last three expressions we have multiplied for 1
c for dimen-

sional physics reasons.
Combining all the results above, we finally have:

dP

dr
+

3P

r
= +

4πJ

rc
− ρκtF

c
(2.40)

where κt = κα + κs, and where we have changed ∂ 7→ d because of the only dependence
on r.
We now have all the ingredients to investigate the problem of radiative transfer: the 3
moments of I in µ:

J = A+
D

4
(2.41)

F =
4πB

3
+ πD (2.42)

P =
4πA

3c
+
πD

c
(2.43)

and the two equations obtained as moments of the radiative transfer equation:

dF

dr
= −2

r
F − 4πρκαJ + Ė (2.44)

dP

dr
+

3P

r
= +

4πJ

rc
− ρκtF

c
. (2.45)

In the following we investigate the implications of our choice for the expression for I in
equation 2.17, that is flexible enough to allow us to switch from an optically thick regime



The Radiative Transfer equations 23

(dominated by the "A" term) to an optically thin regime (dominated by the "D" term,
i.e. with a dominant central point source, the central MBH). We mainly explore two
models: the first one is the "D Model", used in Ciotti, Pellegrini, et al. (2017), which
treats the ISM as a quasi-optically thin medium. The second one is the "AD Model",
that is used in this thesis work, that will be explored in depth afterwards.
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2.3 The D Model

The choice of the intensity function for this model is simply:

I(r, µ) = D(r)δ(µ− 1) (2.46)

With this choice, the three moments 2.41-2.43, with the terms A and B equal to zero,
become:

J =
D

4
(2.47)

F = πD (2.48)

P =
πD

c
. (2.49)

Taking the 2.28:

dF (r)

dr
+

2

r
F (r) = −4πρ(r)κα(r)J(r) + Ė(r) (2.50)

and writing it as a function of D, we have:

π
dD(r)

dr
+

2π

r
D(r) = −πρ(r)κα(r)D(r) + 4πε(r) (2.51)

that is:

dD(r)

dr
+

2

r
D(r) = 4ε(r)− ρ(r)κα(r)D(r) . (2.52)

Knowing that :

L = 4πr2F = 4π2r2D (2.53)

and

dD

dr
+

2

r
D =

1

r2

d(r2D)

dr
, (2.54)

we can write 2.44 as:

dL(r)

dr
= 4πr2Ė(r)− ρ(r)κα(r)L(r) . (2.55)

If there are not discrete energy sources (like star formation input energy), then Ė = 0
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and we have

dL(r)

dr
= −ρ(r)κα(r)L(r) . (2.56)

Equation 2.56 tells us that in a general absorbing medium (with κα > 0) we have that
dL
dr < 0, thus the light decreases with increasing radius.
Once we have the net flux F (2.48), for the 2.50 the radiation pressure is simply

P =
F

c
. (2.57)

To find ∇P , let’s take the 2.45:

dP (r)

dr
= −3P (r)

r
+

4πJ(r)

rc
− ρ(r)κt(r)F (r)

c
(2.58)

we insert P and J , and taking into account the 2.53 we can write

dP (r)

dr
= −

(
2L(r)

4πr3c
+
ρ(r)κα(r)L(r)

4πr2c

)
er . (2.59)

We have the same result for the electron scattering, with the difference that the light is
never absorbed, so we have(

dP (r)

dr

)
es

= −
(

2L(r0)

4πr3c
+
ρ(r)κesL(r0)

4πr2c

)
er . (2.60)

The inner boundary condition L(r0) is equal to LBH (for this type of problem), defined
as:

LBH = εemṀbhc
2 (2.61)

where εem is the radiative electromagnetic efficiency, Ṁbh is the mass accretion rate onto
the MBH.
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2.4 The AD Model

The choice for the intensity function for this model is a little more complicated:

I(r, µ) = A(r) +D(r)δ(µ− 1) . (2.62)

With this choice, the three moments J , F and P in 2.41-2.43 become:

J = A+
D

4
(2.63)

F = πD (2.64)

P =
4πA

3c
+
πD

c
(2.65)

where we have put the mildly-anisotropic term B = 0. Considering the first equation in
F (2.28)

dF

dr
= −2

r
F − 4πρκαJ + Ė (2.66)

we rewrite this equation in terms of D and A, which indicates how the radiation field is
isotropic or direct:

π
dD(r)

dr
= −2π

r
D(r)− 4πρ(r)κα(r)

(
A(r) +

D(r)

4

)
+ Ė(r) . (2.67)

We simplify and we have the first equation for the AD Model:

dD(r)

dr
+

2D(r)

r
=
Ė(r)

π
− 4ρ(r)κα(r)

(
A(r) +

D(r)

4

)
. (2.68)

Now let’s take the second equation in P (2.45):

dP (r)

dr
+

3P (r)

r
=

4πJ(r)

rc
− ρ(r)κt(r)F (r)

c
(2.69)

and as we did for the first equation, we rewrite it in terms of D and A

d

dr

(
4πA(r)

3c
+
πD(r)

c

)
+

3

r

(
4πA(r)

3c
+
πD(r)

c

)
=

4π

rc

(
A(r)+

D(r)

4

)
− ρ(r)κt(r)πD(r)

c
.

(2.70)
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Then we multiply it for 3c
4π and we simplify

3

4

dA(r)

dr
+
dD(r)

dr
+

2D(r)

r
= −ρ(r)κt(r)D(r) (2.71)

we insert the 2.68 into the 2.71:

3

4

dA(r)

dr
+
Ė(r)

π
− 4ρ(r)κα(r)

(
A(r) +

D(r)

4

)
= −ρ(r)κa(r)D(r)− ρ(r) , κsD(r) (2.72)

we simplify

3

4

dA(r)

dr
= 4ρκαA(r)− ρ(r)κsD(r)− Ė(r)

π
(2.73)

and we finally obtain:

dA(r)

dr
= 3ρ(r)

(
κα(r)A(r)− κs

D(r)

4

)
− 3Ė(r)

4π
. (2.74)

We now have two equations in two unknowns:

dD(r)

dr
+

2

r
D(r) =

Ė(r)

π
− 4ρ(r)κα(r)

(
A(r) +

D(r)

4

)
(2.75)

dA(r)

dr
= 3ρ(r)

(
κα(r)A(r)− κs

D(r)

4

)
− 3Ė(r)

4π
(2.76)

where we can see the term "A" like an isotropization term.
It is important to understand that the "A equation" (2.76) must be integrated, as

the majority of the radiative transfer problems, from +∞ to 0 because we do not know
the central boundary condition, and the "D equation" (2.136) from 0 to +∞, as we will
see in section 2.5.
The inner boundary condition for D and A derive, as in the D Model, from the central
LBH :

D(r0) =
F (r0)

π
=

LBH
4π2r2

0

, (2.77)

because the light is all-directed from the central MBH at the initial radius; for this reason

A(r0) = 0 . (2.78)
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We can see also how, despite the radiation originated from the central point source has
a radial direction, the medium tends to make it isotropic. Thus, it is very important to
understand how radiation changes depending on the ISM conditions (i.e. the hydrody-
namics, chemical composition, etc).

To find ∇P we proceed as in section 2.3, we take the 2.45:

dP (r)

dr
= −3P (r)

r
+

4πJ(r)

rc
− ρ(r)κt(r)F (r)

c
(2.79)

we insert P and J and, taking in account the 2.53, we have:

dP (r)

dr
= −

(
2L(r)

4πr3c
+
ρ(r)κα(r)L(r)

4πr2c

)
er (2.80)

and for the electron scattering:(
dP (r)

dr

)
es

= −
(

2L(r0)

4πr3c
+
ρ(r)κesL(r0)

4πr2c

)
er . (2.81)

The expression for ∇P in the AD Model is the same as for ∇P of the D Model, but it
can have some differences caused by the variation of LeffBH(r). We will investigate this
topic in chapter 4.
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2.5 Closed Form of the AD Equations

In this section we search for an integral, closed form of the A and D equations, which will
allow us to understand some interesting and deep properties of the two functions A(r)
and D(r) of the AD model.
First of all, we rewrite them :

dD(r)

dr
+

2

r
D(r) =

Ė(r)

π
− 4ρ(r)κα(r)

(
A(r) +

D(r)

4

)
(2.82)

dA(r)

dr
= 3ρ(r)

(
κα(r)A(r)− κs

D(r)

4

)
− 3Ė(r)

4π
. (2.83)

In our scheme, the directional part of the intensity D(r)δ(µ − 1) cannot be negative,
because we are studying only photons which "escape" from the central MBH; also the
isotropic part of the intensity A(r) is necessarily greater than zero, as shown below.

We know, for the definition of intensity, that I(r, µ) ≥ 0; we suppose that A(r) < 0
and in the µ direction we have that I(r, µ) = A(r) + D(r)δ(µ − 1) > 0; so if we move
at fixed radius of an angle from µ, the δ function becomes zero, A(r) does not depend
on µ, and I(r, µ) < 0 as a consequence. So the isotropic term cannot be less than zero.
Let’s see another example:
Taking the AD equations and considering that Ė(r) = 0, they become:

dD(r)

dr
+

2

r
D(r) = −4ρ(r)κα(r)

(
A(r) +

D(r)

4

)
(2.84)

dA(r)

dr
= 3ρ(r)

(
κα(r)A(r)− κs

D(r)

4

)
(2.85)

Suppose that in a certain radius rn we have D(rn) = 0: we can see from the 2.84 that
we would have D(rn) + dD(r) < 0, which is impossible in our scheme, so if D(rn) = 0,
also A(rn) = 0.

On the other hand, if we have A(rn) = 0 and D(rn) > 0, we can see from the 2.85
that we can have A(rn) + dA(r) < 0, which is impossible too. We can conclude that, if
we have D(rn) = 0, also A(rn) = 0 and vice versa.

Another important property is that if exists D(rn) 6= 0 then limr→∞D(r) = 0 and
exists an scattering coefficient opacity κs 6= 0, then exists A(rn) 6= 0 and limr→∞A(r) =
0.

To better understand these and other properties, in the next sections we are going to
find a closed form for these two equations (for the sake of simplicity, we will put Ė = 0)
using the method of the variation of parameters, also known as variation of constants.
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2.5.1 Integration of the D Equation

We start writing the differential equation for D(r):

dD(r)

dr
+

2D(r)

r
= −4ρ(r)κα(r)A(r)− ρ(r)κα(r)D(r) (2.86)

and rewrite it in another form, to integrate it easily:

1

r2

(
dr2D(r)

dr

)
= −4ρ(r)κα(r)A(r)− ρ(r)κα(r)D(r) . (2.87)

Then we multiply the two members for 4π, and using the 2.53 we have:

dL(r)

dr
= −16π2ρ(r)κα(r)r2A(r)− ρ(r)κα(r)L(r) . (2.88)

We define two new functions f(r) and g(r):

f(r) = −ρ(r)κα(r) (2.89)

g(r) = 16π2ρ(r)κα(r)r2A(r) (2.90)

and finally, we write the 2.88 as:

dL(r)

dr
= f(r)L(r)− g(r) . (2.91)

We intend to find a solution for this homogeneous equation, so with g(r) = 0,

L′0(r) = fL0(r) , (2.92)

L′0(r)

L0(r)
= f(r) −→ ln

(
L0(r)

L0(r1)

)
=

∫ r

r1

f(t)dt = F (r, r1) . (2.93)

The homogeneous solution for the 2.91 is:

L0(r) = L0(r1)eF (r,r1) (2.94)

the general solution of 2.88 (which is non homogeneous) it is like that:

L′1(r) = L0(r)u(r) (2.95)
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so deriving the second member and making it equal to the second member of 2.88, we
have:

L′0(r)u(r) + L0(r)u′(r) = f(r)L0(r)u(r)− g(r) , (2.96)

u(r)(L′0 − f(r)L0) + L0u
′(r) = −g(r) (2.97)

with L′0 = f(r)L0 from the 2.92, and using the 2.94, we write :

u′(r) = −g(r)

L0
−→ u(r) = − g(r)

L0(r1)
eF (r,r1) (2.98)

with r1 6= r. We know that
L0(r0) = LBH . (2.99)

We write the most general solution of D equation:

L(r0) = L0(r0) + L1(r0) = L0(r0)[1 + u(r0)] , (2.100)

in this case we have u(r0) = 0 and we can write :

u(r0) = u(r2)− 1

L0(r1)

∫ r0

r2

g(x)e−F (x,r1)dx = 0 (2.101)

with r2 6= r and r2 6= r1,

u(r2) =
1

L0(r1)

∫ r0

r2

g(x)e−F (x,r1)dx . (2.102)

Let’s write the non homogeneous solution for a generic radius, starting from the 2.100
and substituting u(r2) with the 2.102, we obtain:

L(r) = L0(r)[1 + u(r)] = L0(r)

[
1 + u(r2)− 1

L0(r1)

∫ r0

r2

g(x)e−F (x,r1)dx

]
(2.103)

and then,

L(r) =

[
1 +

1

L0(r1)

∫ r0

r2

g(x)e−F (x,r1)dx− 1

L0(r1)

∫ r0

r2

g(x)e−F (x,r1)dx

]
. (2.104)

We can change the sign of the last part of the second member reversing the extremes of
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the integral

− 1

L0(r1)

∫ r0

r1

g(x)e−F (x,r1)dx =
1

L0(r1)

∫ r1

r0

g(x)e−F (x,r1)dx (2.105)

so, the 2.100 becomes:

L(r) = L0(r)

[
1− 1

L0(r1)

∫ r

r0

g(x)e−F (x,r1)dx

]
= L0(r)− L0(r)

L0(r1)

∫ r

r0

g(x)e−F (x,r1)dx

(2.106)
and finally we obtain:

L(r) = L0(r)−
∫ r

r0

g(x)eF (r,r1)−F (x,r1)dx . (2.107)

We can rearrange the exponent appearing in the integral

F (r, r1)−F (x, r1) =

∫ r

r1

f(t)dt−
∫ x

r1

f(t)dt =

∫ r

r1

f(t)dt+

∫ r1

x
f(t)dt = F (r, x) , (2.108)

so finally the solution is:

L(r) = L0(r0)−
∫ r

r0

g(x)eF (r,x)dx . (2.109)

Let’s substitute f(r) and g(r) using 2.89 and 2.90:

L(r) = L0(r)− 16π2

∫ r

r0

ρ(x)κα(x)x2A(x)e−
∫ r
x ρ(t)κα(t)dtdx (2.110)

and knowing that
L(r) = 4π2r2D(r) , (2.111)

we finally write the general solution for L(r):

L(r) = LBHe
−

∫ r
r0
ρ(t)κα(t)dt − 16π2

∫ r

r0

ρ(x)κα(x)x2A(x)e−
∫ r
x ρ(t)κα(t)dtdx (2.112)

we can write the final solution for the D(r) equation using 2.99 and 2.111

D(r) = D(r0)

(
r

r0

)−2

e
−

∫ r
r0
ρ(t)κα(t)dt− 4

r2

∫ r

r0

ρ(x)κα(x)x2A(x)e−
∫ r
x ρ(t)κα(t)dtdx (2.113)

with

D(r0) =
LBH
4π2r2

0

. (2.114)
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2.5.2 Integration of the A Equation

Let’s start writing the differential equation for A(r):

dA(r)

dr
= 3ρ(r)κα(r)A(r)− 3

4
ρ(r)κs(r)D(r) ; (2.115)

as we have done for the differential equation for D(r), we are going to define two new
functions f(r) and g(r):

f(r) = 3ρ(r)κα(r) , (2.116)

g(r) =
3

4
ρ(r)κsD(r) , (2.117)

and we write the differential equation for A(r) in terms of f(r) and g(r):

dA(r)

dr
= f(r)A(r)− g(r) . (2.118)

We’re going to find the homogeneous solution of 2.118, so with g(r) = 0

A′0(r)

A0(r)
= f(r) −→ ln

(
A0(r)

A0(r1)

)
=

∫ r

r1

f(t)dt = F (r, r1) (2.119)

so the general solution for A(r) is:

A0(r) = A0(r1)eF (r,r1) (2.120)

with r1 6= r. The general solution of 2.118 is like that:

A1(r) = A0(r)u(r) ; (2.121)

we derive the second member of 2.121 and making it equal to the second member of
2.118:

A′0(r)u(r) +A0(r)u′(r) = f(r)A0(r)u(r)− g(r) (2.122)

u(r)(A′0 − f(r)A0) +A0u
′(r) = −g(r) , (2.123)
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knowing that A′0 = f(r)A0 from the 2.119, we can write:

u′(r) = − g(r)

A0(r)
, (2.124)

and integrating it, with r2 6= r and r2 6= r1, we obtain:

u(r) = u(r2)− 1

A0(r1)

∫ r

r2

g(x)e−F (x,r1)dx . (2.125)

We know that ∃ rm such that A(rm) = D(rm) = 0, and we put ourselves in this boundary
condition ,

A(rm) = A0(rm) +A1(rm) = A0(rm)[1 + u(rm)] , (2.126)

so that :

A(rm) = 0 ⇐⇒ 1 + u(rm) = 0 . (2.127)

Integrating it from rm to a generic radius r < rm

1 + u(rm) = u(r2)− 1

A0(r1)

∫ r

r2

g(x)e−F (x,r1)dx+ 1 = 0 (2.128)

u(r2) =
1

A0(r1)

∫ r

r2

g(x)e−F (x,r1)dx− 1 , (2.129)

from 2.126 and 2.127 we write :

A(r) = A0(r)[1 + u(r)] = A0(r)

[
1 + u(r2)− 1

A0(r1)

∫ r

r2

g(x)e−F (x,r1)dx

]
, (2.130)

substituting u(r2) with the 2.129, we obtain:

A(r) = A0(r)

[
1

A0(r1)

∫ r

r2

g(x)e−F (x,r1)dx− 1

A0(r1)

∫ r

r2

g(x)e−F (x,r1)dx

]
(2.131)

A0(r)

A1(r)

∫ rm

r
g(x)e−F (x,r1) = eF (r,r1)

∫ rm

r
g(x)e−F (x,r1) =

∫ rm

r
g(x)eF (r,r1)−F (x,r1) .

(2.132)
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We can rearrange the exponent into the integral as we have done in section 2.5.1

F (r, r1)−F (x, r1) =

∫ r

r1

f(t)dt−
∫ x

r1

f(t)dt =

∫ r

r1

f(t)dt+

∫ r1

x
f(t)dt = F (r, x) , (2.133)

and we finally have the general solution for A(r):

A(r) =

∫ rm

r
g(x)eF (r,x)dx , (2.134)

and using the 2.116 and 2.117 we finally have :

A(r) =
3κs
4

∫ rm

r
ρ(r)D(r)e3

∫ rm
x ρ(t)κα(t)dtdx . (2.135)
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2.6 Discussion

We’ve seen previously that it is very important to choose a consistent form for the
intensity: in section 2.3, for the D Model we have seen that we have just one differential
equation to integrate, from the central boundary to outside:

dD(r)

dr
+

2D(r)

r
= Ė(r)− ρ(r)κα(r)D(r) . (2.136)

The only type of opacity in this differential equation is the so called "true" absorption
opacity, and not the scattering opacity; so we can say that the approximation which we
choose for the intensity I(r, µ) = D(r)δ(1− µ) is a good approximation for an optically
thin regime, without the presence of scattering from any kind of particle.

In section 2.4 we have seen that, adding an isotropic term A(r) to the intensity, we
have two equations which must be integrate in two different ways:

dD(r)

dr
+

2D(r)

r
=
Ė(r)

π
− 4ρ(r)κα(r)

(
A(r) +

D(r)

4

)
(2.137)

dA(r)

dr
= 3ρ(r)

(
κα(r)A(r)− κs

D(r)

4

)
− 3Ė(r)

4π
. (2.138)

The first one (2.137) is a differential equation that we have to integrate, as we have
seen for the 2.136, from the central boundary to the external radius. We can see some
differences between the equation for D(r) with the two approximations: in the second
case we have an additional term which participates in the absorption of the radiative
(collimated) field. In some ways, the more we have the isotropic term, the more the
direct radiative field is absorbed.

In the second one (2.138) we have a differential equation for A(r), which has to be
integrated from the outer radius to the central boundary condition of theD(r) differential
equation; we can imagine a trend of this equation changing its sign, so we have two source
terms which are 3Ė(r)

4π and 3
4κsρ(r)D(r) and one absorbing term, 3ρ(r)κα(r)A(r).

In this work we look for a good modeling for the AGN radiative feedback, so with
Ė = 0; when there is an AGN outburst, the AGN luminosity starts from the MBH only
with the direct radiative field, that is D(r), and with A(r) = 0. The 2.138 tells us that if
we start with only direct radiation, the term ρ(r)κs

3D(r)
4 generates the isotropic radiation

A(r) with the presence of a scattering medium. In early-type galaxies there can be a
large amount of hot gas, as a consequence, we expect a large fraction of free electrons,
which scatters light. To sum up, the approximation of the 2.4 seems more fit for the
problem dealt with in our work, so now we are going to focus on the AD model.

In sections 2.5.1 and 2.5.2 we have seen that it is possible to find a closed form for
the two equations 2.137 and 2.138; Here we repeat the solution to 2.137:
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D(r) = D(r0)

(
r

r0

)−2

e
−

∫ r
r0
ρ(t)κα(t)dt− 4

r2

∫ r

r0

ρ(x)κα(x)x2A(x)e−
∫ r
x ρ(t)κα(t)dtdx (2.139)

In general the equation can be written in terms of the optical depth (2.10):

D(r) = D(r0)

(
r

r0

)−2

e−τα(r,r0) − 4

r2

∫ r

r0

ρ(x)κα(x)x2A(x)e−τα(r,x)dx (2.140)

The first term describes how much the medium absorbs the direct radiation field, which
is expressed in terms of radiation flux, because of the r−2. The second one shows us that
the isotropic part of the radiation field generated from the scattering is absorbed from
the medium, as well as the direct radiation field is absorbed.
Now we consider the solution for A(r):

A(r) =
3κs
4

∫ rm

r
ρ(r)D(r)e3

∫ rm
x ρ(t)κα(t)dtdx ; (2.141)

Also in this case we can write the equation for A(r) in terms of τ(r, r′):

A(r) =
3κs
4

∫ rm

r
ρ(r)D(r)e3τα(rm,x)dx . (2.142)

First of all, we can see that if ks = 0, there is not generation of isotropic radiation field;
thus, in presence of a scattering medium, we must use the AD model approximation, to be
consistent with the physics inside the ISM. Furthermore, since we have to integrate from
rm to r with rm > r, the equation shows that the isotropic component of the radiation
field at radius r depends on the radiation "back-scattered" from the interaction of the
direct radiation field with the medium, which can absorb as well as scatter.
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Chapter 3
The Interstellar Medium of Early-type
Galaxies

In the last four decades the observations of very energetic radiation from MBHs at cos-
mological distances have drawn our attention, so, it’s very important to constrain the
input energy radiation for the central MBHs of galaxies, with which try to model the
radiative feedback on ISM.

In this section we will show the condition of the ISM surrounding the central MBH
of elliptical galaxies and the phenomena that transport energy and momentum from the
radiation to the ISM. In the first part we are talking about the impact of radiation on
cold, warm and hot gas (T ≤ few · 107 K) in terms of Compton and photoionization
heating using the equations in Sazonov, Ostriker, Ciotti, et al. (2005); in the second
part we are going to add the presence of dust to explorate radiative transfer in obscured
quasars, following the treatment of dust in Ciotti and Ostriker (2007).
In both cases (gas and dust) we use the characteristic angular-integrated, broad-band
spectral energy distribution of the average quasar in the universe computed in Sazonov,
Ostriker, and Sunyaev (2004) and used in Ciotti and Ostriker (2007).

The maps of hydrodynamics quantities in this section are computed using the results
of the simulations in Ciotti, Pellegrini, et al. (2017) of an elliptical galaxy E4 with a total
mass ofM ∼ 3 ·1012M�, with a modified version of the parallel ZEUS code (Hayes et al.
(2006)), in a 2D axisymmetric configuration, with a radially logarithmic grid in spherical
coordinates (r, θ) of 128×32 meshpoints, spanning from 2.5 pc to 250 kpc, starting from
an age of 2 Gyr, with a reflecting boundary conditions that is set along the z-axis, while
at the outer edge of the computational domain the fluid is free to flow out.

For all the maps that we will show in this and in the next chapters, the z-axis was
excluded in order to avoid gas sticking on it, due to the singularity of the coordinates on
the z-axis. In the white zone inside ∼ 2.5 pc nothing is computed, because that is the
initial radius of the computational domain.

39
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3.1 Passive Stellar evolution: Mass Losses & Heating

The stellar mass-loss rate and the SN Ia are the main ingredients driving the passive
stellar evolution. Gas comes mainly from the asymptotic giant branch, red giant and
planetary nebula phases (this gas is the fuel which flows down on the central MBH). The
gas from the parent stars interacts with the pre-existent ISM and then it heats its kinetic
energy to the X-Ray temperature (Mathews 1990, Parriott and Bregman 2008).

According to single burst stellar population synthesis model (Maraston 2005), for
solar metallicity and an age & 2 Gyr, the rate of stellar mass loss for the whole galaxy
is:

Ṁ?(t) = 10−12A ·M?t
−1.2
12 [M�yr−1] (3.1)

where M? is the galaxy stellar mass at t = 12 Gyr, t12 is time in units of 12 Gyr,
and A = 3.3 is a coefficient which parametrizes the choice of the IMF function (here
the Kroupa IMF, see Pellegrini (2012)). This relation (3.1) is in accord with previous
estimates (Mathews 1989, Ciotti, D’Ercole, et al. 1991). Also the SNe Ia enrich the ISM
with gas, but above all they warm up the ISM; the input mass due to SNe Ia is given by:

ṀSNIa(t) = 1.4M�RSNIa(t) [M�yr−1] (3.2)

where 1.4M� is the maximum mass of a stable white dwarf star, above which electron
degeneracy pressure in the star’s core is insufficient to balance the star’s own gravitational
self-attraction and then we have the explosion of SN Ia which injects all the mass of the
withe dwarfs into the ISM. The term RSNIa(t) is the rate of SN Ia explosion, which is
given by (Greggio 2010)

RSNIa(t) = 0.16

(
H0

70

)2

10−13LBt
−s
12 [yr−1] (3.3)

where LB is the present epoch B-band galaxy luminosity in LB,� , and s characterizes
the secular evolution (recent estimates favour s ≈ 1, Sharon et al. (2010), Maoz et al.
(2011)). Recent observations give ṀSNIa(t = 12 Gyr) = 2.2 · 10−13LB M�yr−1. Thus,
the input mass due to the SNe is ∼ 100 times less than the input mass of gas due to the
passive stellar evolution given above (3.1), which is:

Ṁ? = 2 · 10−11LB [M�yr−1] . (3.4)

Assuming for each supernova event an energy release of ESNIa ≈ 1051 erg, the heating
rate provided by SN Ia explosions LSNIa(t) is given by

LSNIa(t) ≈ ESNIaRSNIa(t) [erg s−1] (3.5)
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In Fig. 3.1 we can see from the simulation the quantity of hot mass generated by the
stellar evolution, including SNe Ia and retained by a representative model at the end of
the run. Some of this gas will be used to form new stars (Fig. 3.2) and accreted on the
central MBH.

Figure 3.1: Mass of hot gas (T > 106 K) within the whole numeric grid.

Also SF and consequent SNII production warm up and enrich of gas the ISM. SF is
implemented by subtracting mass, momentum, and energy from the grid; SF also injects
new mass and energy from SNII explosions. For each SF episode, assuming that the new
stars form with a Salpeter IMF, the mass returned in SNII events is 20% of the new star
mass in that episode; the SNII mass source term at each time comes from considering
that a given SF episode generates SNe II that inject mass (at a rate exponentially declin-
ing on a timescale of ≈ 2 · 107 yr), and that during the evolution of that episode other
episodes may take place, forming other SNIIs that in turn eject mass into the ISM. The
same considerations are taken into account to compute the SNII energy injection rate
(see Negri et al. (2015) for more details). In Fig. 3.2 we can see the star formation rate
and the cumulative mass of new star formed at the end of the run.

The total input mass from stellar evolution is:

Ṁtot(t) = Ṁ?(t) + ṀSNIa(t) + ṀSNII (t) , (3.6)

and the total input energy is:

Ltot(t) = L?(t) + LSNIa(t) + LSNII (t) , (3.7)
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Figure 3.2: From the left to the right panel: SFR in M� yr−1 and cumulative mass of
new star in unit of 109M�.

where L? is the thermalization of the motions of the stars, and it depends on the relative
velocity between stars and ISM (for detail see Ciotti, Pellegrini, et al. (2017)).
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3.2 Gas Physics

In Sazonov, Ostriker, and Sunyaev (2004), in Ciotti and Ostriker (2007) and in Ciotti,
Pellegrini, et al. (2017), the radiative transfer is computed as follows.

The net gas energy rate per unit volume for the gas temperature T & 104 K (in cgs
system), is defined as:

H − C ≡ n2(S1 + S2 + S3) , (3.8)

where n is the hydrogen number density; here the positive and the negative terms are
grouped respectively together in the two terms of heating (H) and cooling functions (C).
The bremsstrahlung losses are given by

S
(−)
1 = −3.8 · 10−27

√
T , (3.9)

and the Compton heating and cooling are given by:

S2 = 4.1 · 10−35(Tc − T )ξ . (3.10)

The sign of S2 function depends on gas temperature: if T < Tc we have Compton heating,
and if T > Tc we have Compton cooling; Tc is the Compton temperature (section 3.2.1).
S2 depends also on ξ, that is the ionization parameter, which is given by:

ξ ≡
LeffBH(r)

n(r)r2
(3.11)

where the function LeffBH(r) in 3.11 is the effective accretion luminosity at radius r, which
is given by

dLeffBH(r)

dr
= −4πr2H(r) (3.12)

which, in the case of a spherically symmetric ISM, is integrated radius by radius; along
each radius the ISM density and temperature vary as prescribed by the hydrodynamics,
so that heating and cooling are not spherically symmetric, but they depend on the 2D
ISM properties at each time step of the hydrodynamical simulation. The equation 3.12
is solved with the central boundary condition LeffBH(r = 0) = LBH (as in 2.61 and 2.99).

Finally S3 describes the photoionization heating, which is given by:

S
(+)
3 = 10−23

b
( ξ
ξ0

)c
1 +

( ξ
ξ0

)c Z

Z�
, (3.13)

where b is:

b = 1.7 · 104T−0.7 (3.14)
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and

ξ0 =

(
1.5

T 0.5
+

1.5 · 1012

T 2.5

)−1

+
4 · 1010

T 2

[
1 +

80

e(T−104)/1.5·103

]
. (3.15)

The line and recombination continuum cooling:

S
(−)
3 = 10−23 a

1 +
( ξ
ξ0

)c Z

Z�
. (3.16)

Note that S3 has an almost-perfect linear dependence on metallicity Z, where:

a = − 18

e25(logT−4.35)2
− 80

e5.5(logT−5.2)2
− 17

e3.6(logT−6.5)2
(3.17)

and

c = 1.1− 18

e
T

1.8·105
+

4 · 1015

T 4
. (3.18)

The gas temperature is bounded from below by the adopted atomic cooling curve, which
has an exponential cut-off below T ∼ 104.
We can write the heating term grouping only the positive terms of 3.8:

H ≡ n2(S
(+)
2 + S

(+)
3 ) . (3.19)

In order to have the idea of how much the ISM absorbs, we can write this heating function
in terms of opacity, that we can call Compton & photoionization absorption coefficient,
κph; using the 3.12, we have:

κph = − 1

ρ(r)LeffBH(r)

dLeffBH(r)

dr
=

4πr2H(r)

ρ(r)LeffBH(r)
. (3.20)

This is a "phenomenological opacity", because it parametrizes the physical absorption
phenomena, in which we use the accretion luminosity as a probe of these phenomena.
In the end, the radial forces per unit mass due to radiation that has been absorbed via
Compton scattering and photoionization can be written as (see 2.59):

(
∇prad

)
ph

=
LeffBH(r)

4πr3

ρ(r)κph
c

LeffBH(r)

4πr2
. (3.21)

In Fig. 3.3 we present the temperature and density maps in order to show the complexity
of the ISM: we can see that the ISM can have density and temperature fields quite uniform
(first and fourth panels from the left), but also a clumped configuration, in which the
colder gas is more piled (second and third panels from the left).
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Figure 3.3: Top row: density field in cm−3. Bottom row:temperature field in K. There
are four representative times in correspondance with an outburst at 7.45 Gyr with an
LBH ∼ 1043 ergs−1. From left to right: t = 7.43 Gyr , t = 7.44 Gyr, t = 7.45 Gyr and
t = 7.46 Gyr.
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3.2.1 Compton Heating

Compton scattering between electrons and photons is an important and very common
process in astrophysics. This type of process can heat the gas (Compton scattering) and
it can also cool the gas (inverse Compton scattering). Our interest lies in the impact of
radiation on gas, so that we focus only on the heating process.
This process can take place only if the incident photon has an energy E = hνph ≥ mec

2:
the difference of these energies is transferred from the photon, which moves to longer
wavelengths, to the electron, that acquires momentum, and it heats the gas in which it
resides. We can speak in terms of temperature, so dividing the energy of photon and
electron with the Boltzmann constant KB we have two temperature, and the condition
become:

Tph ≥ Te (3.22)

which shows us that there is a characteristic gas temperature above which the incident
radiation heats the gas, and this temperature is weighed with the average spectral energy
distribution (SED) of the chosen source (in our case, the central MBH), and this one is
called Compton temperature, Tc. In Sazonov, Ostriker, and Sunyaev (2004) we can find
Tc ' 2 · 107 with an accuracy of a factor ∼ 2 depending on the type of quasar (obscured
vs unobscured); the authors of this article show that the above Tc value is approximately
characteristic of both obscured and unobscured quasars.

As we have shown in 3.2, using the 3.10 we can write the opacity which corresponds
to the Compton heating, in order to quantify the absorption due to Compton scattering
:

HComp = n2S
(+)
2 , (3.23)

an then using the 3.20 we have

κComp =
4πr2HComp(r)

ρ(r)LeffBH(r)
. (3.24)

Figure 3.4 shows the maps of Compton opacity from output of hydro simulations of
Ciotti, Pellegrini, et al. (2017); we can see how this opacity is quite diffuse, and has
always low values. The quantity of absorbed light from the central MBH to the outer
region will also depend on the density of the gas (Fig. 3.3); combining the opacity with
the gas density we can understand in which optical regime we are. Figure 3.5 shows us
the optical depth of Compton opacity, defined as:

τ(r) =

∫ r1

r0

ρ(r)κ(r)dr , r0 < r1 (3.25)

and we can see that is always τ < 1, so we are in the optically thin regime.
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Figure 3.4: Maps of Compton opacity (cm2g−1) in the representative times of Fig. 3.3.

Figure 3.5: Maps of optical depth for Compton opacity in the same representative times
of Fig. 3.3. The blue colours shows a trasparent medium.
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3.2.2 Partially Ionized Gas Clouds

Another important physical phenomenon which occurs in the ISM is photoionization. Gas
exposed to intense quasar radiation can be sufficiently dense to remain only partially
ionized, and photoionization heating, as well as cooling, through continuum and line
emission will then be important. As we have done for the Compton heating, now we
introduce κphoto.

We take the S(+)
3 function in 3.13 and then we multiply it for the square of number

hydrogen density we obtain

Hphoto = n2S
(+)
3 . (3.26)

Then using the 3.24 we obtain

κphoto =
4πr2Hphoto(r)

ρ(r)LeffBH(r)
(3.27)

As we can see in Fig. 3.6, the photoionization opacity is quite different from the Compton
opacity: it is distributed in clouds, and generally can have a value it has greater values
than Compton opacity. In order to have a quantitative idea of the absorption, we show
in Fig. 3.7 a map of the optical depth due to this opacity.

Figure 3.6: Maps of photoionization opacity (cm2g−1) in the representative times of Fig.
3.3

We can see that we are always in a optically thin regime, but we often get close to the
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optically thin regime limit (in some cases τ approaches and can exceed 1). Moreover, this
type of absorption is strongly dependent on the angular distribution of the cold material.

Figure 3.7: Maps of optical depth for photoionization opacity in the same representative
times of Fig. Fig. 3.3.
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3.2.3 Electron Scattering

Let us consider the simplest radiative transfer problem in which such a ray coupling plays
a role. Suppose we have a medium consisting of small particles that can scatter radiation
in arbitrary directions. This process is called isotropic scattering, because the outgoing
direction of a photon has, by assumption, no dependence on the direction of the photon
before the scattering event. Let us also assume that the particles do not absorb nor emit
any of the radiation, and let us focus on a single frequency ν. Let us also assume that
somewhere (either inside or outside of the scattering cloud) there is a source of light,
which we will treat as an initial value for the intensity at the start of rays emanating
from that source (Fig. 3.8).
This is the case of electron scattering : we assume that all the radiation, in the whole

Figure 3.8: Isotropic scattering.

spectrum, will be scattered by the medium, proportionally to the intensity of the radiation
field and also to the medium density:

τes =

∫ s+ds

s
ρ(s′)κesds

′ (3.28)

where ρ is the gas density, κes does not depend on position, therefore is constant κes =
0.35 (Ciotti, Pellegrini, et al. 2017) and ds is the optical path of radiation.

We stress that the presence of electron scattering does not have an impact on variation
of radiation field in the D Model (equation 2.136), but it has a role just in the radiation
pressure (equation 2.81); on the contrary, the electron scattering plays a fundamental
role in the AD Model (equation 2.137).
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3.3 Dust Physics

Giant elliptical galaxies generally have an optically thin ISM, with a negligible pres-
ence of interstellar dust. Observations indicate to us that Quasars emit near (or equal)
to their Eddington limit, which is calculated using the scattering Thomson opacity
κes = 0.35 cm2g−1; in comparison with the typical opacity of dust grains in different
electromagnetic bands (Ciotti and Ostriker 2007; Novak et al. 2012; Hensley et al. 2014)
we have that Thomson opacity is ∼ 103 times smaller than dust opacity (Tab 3.3).

Band Energy Fraction Dust Opacity
X-ray E > 2 keV 0.7
UV 13 eV < E < 2 keV 0.2 3920 κes
Optical 1 eV < E < 13 eV 0.1 979 κes

Table 3.1: Table of dust opacity in the three band (UV, OPT and IR)for solar metallicity
gas with Milky Way dust-to-gas ratio expressed in terms of the electron scattering opacity
κes = 0.35 cm2g−1, assumed unabsorbed AGN energy output by band (Sazonov, Ostriker,
and Sunyaev 2004).

Because of this difference between the opacities, radial forces on dust grains due to
radiation from the AGN can easily overpower the other dynamic drivers during AGN
flaring.
The existence of obscured and unobscured quasars, added to the observational fact that
in elliptical galaxies in a "off phase" of AGN there is not dust, indicates us that dust in
these type of objects has a parallel dynamical evolution with the AGN phase "on" and
"off". Hensley and collaborators (Hensley et al. 2014) have found that during the cooling
flow phases the radiative pressure on dust grains in the cold gas shells infalling onto the
central MBH can greatly impact on the gas available for accretion, and consequently on
the frequence and the time-scale of outburst.

We must of course take into account the fact that dust can absorb radiation very
efficiently in the UV and Optical bands, and it reprocesses and re-emits this light in
the IR band, and this can have a great impact on the gas dynamics. Indeed, obscured
AGN IR Spectral Energy Distribution (SED) is dominated by thermal emission from dust
(Neugebauer et al. 1979), heated by the primary Optical and UV continuum (dominating
the unobscured AGN SEDs). According to observations, in Hensley et al. (2014) it was
estimated that the re-emission of the IR radiation due to warm dust can dominate the
bolometric luminosity of galaxy during the early phases of AGN bursts, which can reach
∼ 1046 erg s−1.

In addition, infalling shells of cold gas can be supported by radiative pressure and
slowing down the accretion can have an impact on the gas quantity available for residual
star formation (the so called "positive feedback", Ciotti, Ostriker, Novak, et al. 2015) at
late times.

In this work we chose to treat dust opacity as in Ciotti and Ostriker (2007), with the
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confirmation of this view by Hensley et al. (2014), in which the dust opacity (in cm2g−1)
is divided in three broad bands: UV, Optical and IR, while:

κopt =
300

1 + T/104
κUV = 4κopt κIR =

κopt
150

. (3.29)

We have also divided the bolometric accretion luminosity in broad bands (as in 3.3):

LBH,X = 0.7LBH , LBH,opt = 0.1LBH , LBH,UV = 0.2LBH (3.30)

while the infrared luminosity is produced by the reprocessing of absorbed radiation from
dust:

LBH,IR = LabsBH,UV + LabsBH,Opt . (3.31)

In this work we have not computed the reprocessed light, but we plan to do the same
study adding this IR light and the relative pressure on dust grains. The LBH,X heat the
gas via processes explained in section 3.2.

As we can see from the 3.29, the temperature dependent denominator is designed to
mimic the destruction of dust (sputtering) at high temperatures; also, these opacities
have the same spatial distribution, but they are different in absolute values.

Figure 3.9: Maps of dust opacity (cm2g−1). There are four representative times in
correspondance with an outburst at 7.11 Gyr with an LBH ∼ 3 · 1043 ergs−1. From left
to right: t = 7.10 Gyr , t = 7.11 Gyr, t = 7.12 Gyr and t = 7.13 Gyr.

Furthermore, we can see that τ can exceed 1 very easily; thus shows the importance to
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Figure 3.10: Maps of optical depth for dust in the representative times of Fig. 3.9.

find a new model of radiative transfer which can interpolate the optically thin regime
and also the optically thick regime (the presence of dust is crucial). The optical depth
for dust is computed as follow:

τdust =

∫ s+ds

s
ρ(s′)(κuv(s

′) + κopt(s
′) + kes)ds

′ (3.32)

with the same definitions of the 3.28.
Finally, the radiative pressure gradient is computed using the unabsorbed light separately
for each bands, using the relative opacity and equation 2.80.



54 The Interstellar Medium of Early-type Galaxies


	Introduction
	Observational Evidence of AGN feedback
	Purpose of the Thesis

	Radiative Transfer Modeling
	Basics on Radiative Transfer
	The Radiative Transfer equations
	The D Model
	The AD Model
	Closed Form of the AD Equations
	Integration of the D Equation
	Integration of the A Equation

	Discussion

	The Interstellar Medium of Early-type Galaxies
	Passive Stellar evolution: Mass Losses & Heating
	Gas Physics
	Compton Heating
	Partially Ionized Gas Clouds
	Electron Scattering

	Dust Physics

	Geometry of Radiative Transfer equation

