Parisini, Enrico
(2016)
L'atmosfera termica e il suo ruolo nell'entropia dei buchi neri.
[Laurea], Università di Bologna, Corso di Studio in
Fisica [L-DM270]
Documenti full-text disponibili:
Abstract
Con il testo presente, si intende mostrare come i gradi di libertà associati all'entropia di un buco nero possano essere ricercati in parte fruttuosamente nell'interazione dei campi quantistici con la struttura causale e geometrica esibita da un buco nero. Nel Capitolo 1, si affrontano le principali caratteristiche dei buchi neri alla luce della teoria classica di Relatività Generale: sono analizzate la soluzione di Schwarzschild e la struttura causale nello spazio-tempo conseguente, discutendo le definizioni di orizzonte e di singolarità e il rapporto che le lega, con riferimento ai risultati di Penrose e Hawking. Introdotto, all'inizio del Capitolo 2, il concetto di gravità superficiale e la metrica di Kerr-Newman, si studia il significato delle Quattro Leggi dei buchi neri, valide per soluzioni stazionarie. Il Capitolo 3 espone quali motivazioni spingano a proporre una caratterizzazione termodinamica dei buchi neri, attribuendovi una temperatura e un'entropia (detta “di Bekenstein-Hawking”) di natura geometrica, dipendente dall'area dell'orizzonte; si trattano qui i problemi che si incontrano nel costruire una corrispondente Meccanica Statistica. Si descrive dunque in quali termini il processo di radiazione di Hawking riesca a dare una spiegazione fisica della temperatura, e si rileva la presenza, secondo osservatori statici, di un'atmosfera termica nei pressi dell’orizzonte. Infine, si esamina la possibilità di attribuire alla radiazione di Hawking i gradi di libertà relativi all'entropia di Bekenstein-Hawking. In particolare, si illustra il modello a muro di mattoni di 't Hooft, che lega i gradi di libertà all'atmosfera termica. Considerando infine la deformazione dell'orizzonte dovuta a fluttuazioni quantistiche, si giunge alla conclusione che l'entropia dell'atmosfera termica rappresenta non un'interpretazione dell'entropia di Bekenstein-Hawking, bensì una sua correzione al secondo ordine.
Abstract
Con il testo presente, si intende mostrare come i gradi di libertà associati all'entropia di un buco nero possano essere ricercati in parte fruttuosamente nell'interazione dei campi quantistici con la struttura causale e geometrica esibita da un buco nero. Nel Capitolo 1, si affrontano le principali caratteristiche dei buchi neri alla luce della teoria classica di Relatività Generale: sono analizzate la soluzione di Schwarzschild e la struttura causale nello spazio-tempo conseguente, discutendo le definizioni di orizzonte e di singolarità e il rapporto che le lega, con riferimento ai risultati di Penrose e Hawking. Introdotto, all'inizio del Capitolo 2, il concetto di gravità superficiale e la metrica di Kerr-Newman, si studia il significato delle Quattro Leggi dei buchi neri, valide per soluzioni stazionarie. Il Capitolo 3 espone quali motivazioni spingano a proporre una caratterizzazione termodinamica dei buchi neri, attribuendovi una temperatura e un'entropia (detta “di Bekenstein-Hawking”) di natura geometrica, dipendente dall'area dell'orizzonte; si trattano qui i problemi che si incontrano nel costruire una corrispondente Meccanica Statistica. Si descrive dunque in quali termini il processo di radiazione di Hawking riesca a dare una spiegazione fisica della temperatura, e si rileva la presenza, secondo osservatori statici, di un'atmosfera termica nei pressi dell’orizzonte. Infine, si esamina la possibilità di attribuire alla radiazione di Hawking i gradi di libertà relativi all'entropia di Bekenstein-Hawking. In particolare, si illustra il modello a muro di mattoni di 't Hooft, che lega i gradi di libertà all'atmosfera termica. Considerando infine la deformazione dell'orizzonte dovuta a fluttuazioni quantistiche, si giunge alla conclusione che l'entropia dell'atmosfera termica rappresenta non un'interpretazione dell'entropia di Bekenstein-Hawking, bensì una sua correzione al secondo ordine.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Parisini, Enrico
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Entropia di Bekenstein-Hawking,Atmosfera termica,Modello Brick Wall
Data di discussione della Tesi
23 Settembre 2016
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Parisini, Enrico
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Entropia di Bekenstein-Hawking,Atmosfera termica,Modello Brick Wall
Data di discussione della Tesi
23 Settembre 2016
URI
Statistica sui download
Gestione del documento: