Leoni, Luca
 
(2023)
Enhancing diagrammatic Monte Carlo via machine learning.
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Physics [LM-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (Thesis) Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 Download (15MB)
 | 
        
      
    
  
  
    
      Abstract
      Since their introduction in 1949 Feynman's diagrams have proven over time to be the most precise and intuitive way of approaching quantum field theory, quantum statistical mechanics, and many-body physics.
Feynman's diagrams approach is used in many physical problems, as they are able to simplify complex formalism and provide efficient tools for numerical simulations.
The Diagrammatic Monte Carlo (DMC) technique is one such computational methods, which stands tall among the most precise approximation-free Markov Chain integration methods.
Still, As all Monte Carlo approaches, the main limitation of DMC is the huge computational cost.
Thus, in this thesis work, we aimed to reduce the computational time by proposing new ways of constructing the diagrams Markov Chain to reduce correlation with respect to today's standard approaches.
This study has led us to the creation of two new proposals: an analytical approach that grants the minimum correlation possible in the Markov Chain, and a more general neural network protocol based on the Normalizing Flow architecture.
Both methods have been tested on different models showing effectiveness in reducing the correlation, and so the number of samples needed for convergence, giving a boost in performances if used in the proper context.
     
    
      Abstract
      Since their introduction in 1949 Feynman's diagrams have proven over time to be the most precise and intuitive way of approaching quantum field theory, quantum statistical mechanics, and many-body physics.
Feynman's diagrams approach is used in many physical problems, as they are able to simplify complex formalism and provide efficient tools for numerical simulations.
The Diagrammatic Monte Carlo (DMC) technique is one such computational methods, which stands tall among the most precise approximation-free Markov Chain integration methods.
Still, As all Monte Carlo approaches, the main limitation of DMC is the huge computational cost.
Thus, in this thesis work, we aimed to reduce the computational time by proposing new ways of constructing the diagrams Markov Chain to reduce correlation with respect to today's standard approaches.
This study has led us to the creation of two new proposals: an analytical approach that grants the minimum correlation possible in the Markov Chain, and a more general neural network protocol based on the Normalizing Flow architecture.
Both methods have been tested on different models showing effectiveness in reducing the correlation, and so the number of samples needed for convergence, giving a boost in performances if used in the proper context.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Leoni, Luca
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          MATERIALS PHYSICS AND NANOSCIENCE
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Monte Carlo,DMC,Feynman diagrams,many-body,Markov Chain,Computational Material Physics
          
        
      
        
          Data di discussione della Tesi
          26 Ottobre 2023
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Leoni, Luca
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          MATERIALS PHYSICS AND NANOSCIENCE
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Monte Carlo,DMC,Feynman diagrams,many-body,Markov Chain,Computational Material Physics
          
        
      
        
          Data di discussione della Tesi
          26 Ottobre 2023
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        