Rational algorithms for the decomposition of Feynman integrals via intersection theory

Fontana, Gaia (2022) Rational algorithms for the decomposition of Feynman integrals via intersection theory. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (1MB)

Abstract

The decomposition of Feynman integrals into a basis of independent master integrals is an essential ingredient of high-precision theoretical predictions, that often represents a major bottleneck when processes with a high number of loops and legs are involved. In this thesis we present a new algorithm for the decomposition of Feynman integrals into master integrals with the formalism of intersection theory. Intersection theory is a novel approach that allows to decompose Feynman integrals into master integrals via projections, based on a scalar product between Feynman integrals called intersection number. We propose a new purely rational algorithm for the calculation of intersection numbers of differential $n-$forms that avoids the presence of algebraic extensions. We show how expansions around non-rational poles, which are a bottleneck of existing algorithms for intersection numbers, can be avoided by performing an expansion in series around a rational polynomial irreducible over $\mathbb{Q}$, that we refer to as $p(z)-$adic expansion. The algorithm we developed has been implemented and tested on several diagrams, both at one and two loops.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Fontana, Gaia
Relatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
scattering amplitudes,high-energy physics,intersection theory,feynman integrals,finite fields,multiloop calculations,precision physics,rational algorithm
Data di discussione della Tesi
28 Ottobre 2022
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^