Reinforcement Learning in Rogue

Cortesi, Daniele (2018) Reinforcement Learning in Rogue. [Laurea magistrale], Università di Bologna, Corso di Studio in Informatica [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 (CC BY-NC-SA 3.0)

Download (623kB)

Abstract

In this work we use Reinforcement Learning to play the famous Rogue, a dungeon-crawler videogame father of the rogue-like genre. By employing different algorithms we substantially improve on the results obtained in previous work, addressing and solving the problems that were arisen. We then devise and perform new experiments to test the limits of our own solution and encounter additional and unexpected issues in the process. In one of the investigated scenario we clearly see that our approach is not yet enough to even perform better than a random agent and propose ideas for future works.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Cortesi, Daniele
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Linguaggi e fondamenti
Ordinamento Cds
DM270
Parole chiave
reinforcement learning,rogue,a3c,acer
Data di discussione della Tesi
18 Luglio 2018
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^