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SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

REINFORCEMENT LEARNING

IN ROGUE

Relatore:

Chiar.mo Prof.

ANDREA ASPERTI

Presentata da:

DANIELE CORTESI

Sessione I

Anno Accademico 2018/2019



To Mirta and Giovanni





Introduction

Reinforcement learning (RL) is a machine learning framework that in-

volves learning to interact with an environment in such a way that maxi-

mizes a numerical reward signal, without human supervision. This is po-

tentially better than developing hard-coded programs that interact with the

environment, due to the thorough knowledge of its mechanisms that the lat-

ter approach requires. No such understanding is needed in RL, that can

nonetheless produce surprisingly good policies exclusively by trial-and-error,

although it can certainly be included when available. Moreover, RL has been

able to devise better and novel strategies than those previously known: e.g. in

the game of Backgammon [44] it learned unprecedented opening moves good

enough to be adopted by professional players. In problems encompassing

large state spaces — i.e. exhibiting an intractable amount of configurations,

like Backgammon or Chess board positions — some approximation method

is fundamental. Neural networks (see section 1.2.3) are powerful nonlinear

function approximators inspired to biological brains that are often preferred

for this task and we will be the basis of our work.

Recently RL has attracted a lot of attention due to the results attained

by Mnih et al. [29] in Atari 2600 games. The authors developed a novel Q-

learning algorithm and had a neural network, that they call deep Q-network

(DQN), learn to play with fixed hyper-parameters the games available on

the platform from almost raw pixels and using only the score as a reward,

achieving expert human level play on many of them and super human levels

on several others. This break through inspired a considerable amount of en-
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ii INTRODUCTION

deavors, summarized in [26], that improved on the results either by enhancing

DQN or by entirely different approaches.

This work aims at automatically learning to play, by RL and neural net-

works, the famous Rogue, a milestone in videogame history that we describe

throughly in chapter 2. It introduced several mechanics at its core, spawning

the entire rogue-like genre, like procedural (i.e. random) level generation,

permadeath (i.e. no level replay) and other aspects discussed in section 2.2,

that make it very challenging for a human and constitute an interesting RL

benchmark. Related works on this game started with Pedrini’s thesis [34], to

which our own can be considered a spiritual successor, and continued with

[3, 4]. Several problems emerged there that we successfully addressed here,

enabling us to obtain much better results and investigate new scenarios where

we encountered further obstacles. Games are possibly the most popular test-

ing ground for RL methods, because they are designed to challenge human

skills and are often simplified simulations of reality. Many environments exist

for training RL agents to play games, such as [6, 8] for arcade games, [8] for

some continuous control tasks, [22] for the famous DOOM and very recently

[46] for StarCraft II (please see section 1.3 for more details and other RL

applications). Rogueinabox [34, 3] is the sole environment for Rogue we are

aware of, see section 2.3 for more details and rogue-like environments.

In the following, we introduce the RL theoretical background in chapter 1

and then present Rogue in chapter 2. We proceed to discuss our experiments

in chapter 3 and then draw the conclusions.
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Chapter 1

Reinforcement Learning

Reinforcement learning (RL) is a machine learning setting involving an

agent interacting with an environment that changes in relation to the actions

performed. The agent receives a numerical reward signal for each action

taken and seeks to maximize the cumulative reward obtained in the long

run, despite the uncertainty about the environment. Since actions affect

the opportunities available at later times, the correct choices require taking

into account their indirect and delayed consequences, which may require

foresight or planning. The RL framework is an abstraction of the problem

of goal-directed learning from interaction, in which all relevant details are

reduced to the environment states, the actions performed and the rewards

consequently received, which define the goal of the problem. RL is strongly

linked with psychology and neuroscience: of all forms of machine learning, it

is the closest to the way that humans and other animals learn [41].

The main characteristics of RL are:

• being a closed-loop problem, such that the actions taken influence the

later inputs, available actions and rewards;

• not having direct instructions as to what actions to take;

• the consequences of actions, and subsequent rewards, play out over

extended periods of time.
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4 1. Reinforcement Learning

RL differs from supervised learning in that there is no set of labeled ex-

amples provided by an external supervisor. In essence, it uses training infor-

mation that evaluates its actions rather than instructing them by providing

correct samples. Such feedback indicates how good the action taken is, but

not whether it’s the best or worst one possible. It would also be impractical

to form a set of such examples that is both correct and representative of all

the situations in which the agent is expected to act optimally. Moreover, RL

is renown for producing optimal behaviors that were previously unknown,

such as in the games of Backgammon [44] and Go [38, 39].

RL is also different from unsupervised learning, as it tries to maximize a

reward signal instead of uncovering a hidden structure in unlabeled data.

To make the distinction even clearer, there is an important issue that

arises only in RL: the trade-off between exploration and exploitation. An

agent must in fact prefer actions it has tried in the past that were found

to be effective in producing reward, however to discover such actions it has

to try ones it has not selected before. The point is that neither exploration

nor exploitation alone are sufficient to succeed at the task: they must be

combined, typically by progressively shifting the focus from exploration to

exploitation.

1.1 Elements of RL

In this section we present the main elements of the RL framework.

1.1.1 Agent

The entity continually interacting with the environment. The first selects

actions according to a policy and the the second responds by presenting new

observations and rewards. The agent can either be a complete organism or

a component of a larger system. The boundary between the agent and the

environment is usually drawn very close to the agent: for example, if it has

arms then they are considered part of the environment and in general so
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is everything that cannot be arbitrarily changed by the agent. The agent-

environment boundary represents the limit of the agent’s absolute control,

but not of its knowledge, in fact it may know to any degree how the rewards

are computed as a function of its actions.

1.1.2 Environment

In general a Partially Observable Markov Decision Process (POMDP)

[33, 30]. Formally, a MDP is a tuple (S,A, p), where:

• S is the set of possible states;

• A is the set of possible actions, withA(st) denoting the actions available

at time t in state st ∈ S;

• p : S×R×S×A → [0, 1] is the probability function of state transitions,

such that p(s, r|st, at) denotes the probability of a next state-reward

pair following a a state-action pair at time t. Often p(s|st, at) is used

to denote the probability of transitioning to state s without considering

a specific reward.

                                                                                

         --------                      ----------        --------               

         |......|                      |........+######  |......|               

         |......+#########             |........|     ###+.!....|               

         |......|        ##############+........|        -+------               

         ------+-                      --------+-         #                     

               #                               #          #                     

               #########                       #          ####                  

                       #          -------------+----         #                  

                       #          |................|        -+-----------       

 ----------------------+-         |................|        |...........|       

 |.*....................|         |................|        |.........*.|       

 |.............%..@.....|         |................|        |...........|       

 --------------+---------         --------+---------        |.....!.....|       

                                          #                 -+-----------       

                                          #                  #                  

                                   ########              #####                  

                                   #                    -+--------              

                                 --+--                  |........|              

                                 |...+##################+.......?|              

                                 |...|                  |........|              

                                 |...|                  ----------              

                                 -----                                          

Level: 1  Gold: 3      Hp: 12(12)  Str: 16(16)  Arm: 4   Exp: 1/0  Cmd: 265     

Environment

as s

Agent

r

Figure 1.1: Markov Decision Process dynamics

The interaction between the agent and the environment is divided in

discrete time steps t = 0, 1, 2, . . . At each time step the agent receives a

representation of the environment state st ∈ S, selects an action at ∈ A(st)
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according to a policy π and then receives the next state and reward st+1, rt

sampled from p(·, ·|st, at). We define a state-action trajectory the sequence

st, at, st+1, at+1, . . . , sT of states observed and actions taken from time t to

T . The steps are not required to refer to fixed intervals of time and likewise

the actions may be low or high level controls, such as motor voltages or the

decision of a destination, respectively. We will solely consider the episodic

case in which the interaction with the environment naturally breaks down in

episodes, i.e. in many independent finite trajectories ending in a final state.

The opposite case, called continuing case, is also studied and described in

[41].

Most of RL theory is developed assuming the Markov Property, an at-

tribute that the states presented by the environment have if they contain

all relevant information for predicting future states, e.g. the position of all

pieces in a chess game. The algorithms are nonetheless successfully applied

often times even in its absence: people can make very good decisions in non-

Markov tasks, e.g. poker, so arguably this should not be a severe problem

for a RL agent.

1.1.3 Model

A system that is able to predict how the environment will behave. It can

be used for planning, i.e. deciding the sequence of future actions considering

possible future situations before they are actually experienced. Methods

for solving RL problems that use models and planning are called model-

based, while simpler methods that are exclusively trial-and-error learners are

referred to as model-free. The latter are much more effective than they may

appear, which makes RL very powerful indeed: complex sequences of actions

that maximize the future cumulative reward received can be learned without

any prior knowledge of the environment dynamics. In this work will focus

on model-free approaches and will not discuss the model-based alternative,

which is explained in [41].
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1.1.4 Policy

The definition of the agent’s way of behaving at a given time. It is a map-

ping, or a probability distribution, from perceived states of the environment

to actions to be taken. Formally, a policy is a function π : A × S → [0, 1]

and the probability of selecting action a in state st at time step t is denoted

πt(a|st).

1.1.5 Reward signal

The definition of the goal in a RL problem. On each time step, the envi-

ronment sends the agent a number representing the reward. The objective of

the learning agent is to maximize the total reward received in the long run.

Importantly the process generating the reward must be unalterable by the

agent and its definition should be devised with care: we must reward only

what we want the agent to achieve, but not how to achieve it. If subgoals are

rewarded, e.g. taking enemy pieces in a chess game, the agent might learn

just to accomplish such subgoals instead of what we really want to achieve,

e.g. winning the chess game.

1.1.6 Value function

The total amount of reward the agent can expect to accumulate over the

future, starting from a given state. This represents an indication of the long-

term desirability of states, e.g. one may yield a low immediate reward but be

regularly followed by states that yield high rewards, or the opposite. More

formally, the value function corresponds to the expected return of a state s.

The return is defined as Gt =
∑T

k=0 γ
krt+k where T is the final time step and

γ ∈ [0, 1] is a discount factor, which regulates how strongly future rewards

are taken into consideration. Hence a value function is defined as:

vπ(s) = Eπ[Gt|st = s] (1.1)
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which denotes the expected return of starting in s and then following the

policy π. This is called state-value function for policy π. The learning agent

should seek actions that bring about states of highest value and not highest

reward, because these are the actions that will obtain the greatest amount of

reward over the long run. Values must be estimated and re-estimated from

the sequences of observations an agent makes over its entire lifetime: as such

a method for efficiently estimating values is crucial.

Another important function is qπ, the action-value function, which is

defined as:

qπ(s, a) = Eπ[Gt|st = s, at = a] (1.2)

The q and v functions are related in the following way:

vπ(s) =
∑
a

π(a|s)qπ(s, a) (1.3)

q(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (1.4)

State value functions satisfy a recursive relationship, known as the Bell-

man equation:

vπ(s) = Eπ[Gt|st = s]

= Eπ[rt + γGt+1|st = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γEπ[Gt+1|st+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)], ∀s ∈ S

(1.5)

An analogous equation can be derived for action value functions. This rule

forms the basis of many ways to approximate vπ via update or backup oper-

ations, that transfer value information back to a state from its successors, or

to state-action pairs from subsequent pairs.

1.1.7 Optimal policy and value functions

A policy π is defined to be better than or equal to another policy π′, i.e.

π ≥ π′, if and only if vπ(s) ≥ v′π(s) ∀s ∈ S. A policy that is better or equal
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to all other policies is defined to be an optimal policy and is denoted by π∗.

All optimal policies have the same optimal state and action value functions,

defined as: v∗(s) = maxπ vπ(s) and q∗(s, a) = maxπ qπ(s, a). These equations

can also be written without referencing any policy, in a form known as the

Bellman optimality equations:

v∗(s) = max
a

E[Gt|st = s, at = a]

= max
a

E[rt + γGt+1|st = s, at = a]

= max
a

E[rt + γv∗(st+1)|st = s, at = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

(1.6)

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ max
a′

q∗(s
′, a′)] (1.7)

Once we have q∗ it’s easy to formulate an optimal policy: simply taking

one of the actions that maximizes q∗(s, ·) will do. In literature, those actions

are called greedy actions and the policy is referred to as a greedy policy.

Greedy does not imply optimal in general, however since q∗ is the estimate of

the future return, and not of the future one-step reward, then a greedy policy

always selects the action that maximizes the expected cumulative reward.

Using exclusively v∗ requires complete knowledge of the environment’s

dynamics, i.e. p(s′, r|s, a), that would in principle allow to solve v∗ (and also

q∗). However having this kind of information is rare and usually the state

space of the problem is so large, e.g. in chess, that it would require thousand

of years. This is actually what the value iteration [41] algorithm does: the

procedure is divided in iterations, each of which computes a more precise

estimate of v∗ by a formula directly derived from equation (1.6).

In practice, q∗ or v∗ are often estimated with increasing precision during

the interaction with the environment, using the gathered experience. This

kind of learning is usually referred to as on-line learning. Moreover, an

optimal policy may not even require that the value of all states or state-

action pairs be estimated, only the fraction that is frequently encountered.
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In order to maintain a balance between exploration and exploitation in on-

line learning, an ϵ-greedy policy is often used: such a policy selects the greedy

action with respect to the current estimation of q∗ or v∗ with probability 1−ϵ
and a random action otherwise. When greedy actions are chosen, then we

are exploiting our current knowledge of the environment, otherwise we are

exploring.

1.2 RL algorithms

In this sections we will describe some the most well known RL algorithms.

Some of them can framed in a generalized policy iteration (GPI) scheme, while

others in the policy gradient framework.

In GPI the processes of policy evaluation and improvement are alternated.

The policy evaluation process computes vπ, or more generally brings its esti-

mate at a given time closer to its true value. The policy improvement process

makes the current policy π greedy with respect to the updated estimate of vπ.

The two processes pull in opposing directions, because policy improvement

makes the value function incorrect for the new policy, while policy evalua-

tion causes π to no longer be greedy. Their interaction however results in

the convergence to optimality.

In policy gradient methods, the mapping π is learned directly via some

gradient ascent technique on E[Gt]. This has some advantages over GPI that

we discuss in section 1.2.6.

1.2.1 On-policy vs Off-policy

Algorithms are said to be on-policy if they improve the same policy that is

used to interact with the environment, and off-policy if the policy improved,

called target policy is different than the one used to make decisions, called

behavior policy, which generates the training data and may be arbitrary in

general. In both cases, the policy used for the interaction is required to take

all actions with a probability strictly higher than zero and thereby is often
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ϵ-greedy. In fact, exploration can only stop in the limit of an infinite number

of actions in order to be sure there are no actions that are actually better

than those favored at a given time. On-policy learning produce policies that

are only near-optimal, because they can never stop exploring. Off-policy

learning is more powerful and includes on-policy methods as a special case,

but it usually suffers from greater variance and is slower to converge.

Importance sampling

Off-policy methods usually make use of importance sampling, a technique

for estimating expected values under one distribution given samples from

another, which is used to weights the returns according to the relative prob-

ability of their trajectories occurring under the target and behavior policies,

called importance-sampling ratio. The probability of a state-action trajectory

st, at, st+1, at+1, . . . , sT occurring under policy π is
∏T−1

k=t π(ak|sk)p(sk+1|sk, ak).

Let µ be the behavior policy, then the importance-sampling ratio is:

ρt:T−1 =

∏T−1
k=t π(ak|sk)p(sk+1|sk, ak)∏T−1
k=t µ(ak|sk)p(sk+1|sk, ak)

=
T−1∏
k=t

π(ak|sk)

µ(ak|sk)
(1.8)

which has the interesting property of being independent of the environment

dynamics. We also define ρt = ρt:t = π(at|st)
µ(at|st) .

Importance sampling is necessary to compute an estimate of vπ that is

correct in relation to the policy π and unbiased, however it can be the source

of high variance, because the product in (1.8) is potentially unbounded.

1.2.2 Bootstrapping and temporal-difference learning

A RL algorithm is said to bootstrap if the updates it makes are based on

estimates. This kind of update is at the heart of temporal-difference (TD)

learning, a technique for estimating state or action value functions. The

target for the update of the simplest TD method, called TD(0) or one-step

TD, is rt+γV (st+1) where V is the estimate of the value function with respect
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to a policy at a given time. The complete TD(0) update is:

V (st)← V (st) + α[rt + γV (st+1)− V (st)] (1.9)

where α ∈ [0, 1] is called step-size parameter that controls the rate of learning

and the starting value of V is arbitrary. The difference δt = rt + γV (st+1)−
V (st) is called the TD error and arises in various forms throughout RL. This

form of TD evaluates every state s ∈ S and we refer to it as the tabular

case. Since the target of the update involves the estimate of V , we say

that TD(0) bootstraps and that it is biased. This bias is often beneficial,

reducing variance and accelerating learning. The bootstrapping of one step

TD methods enables learning to be fully on-line and incremental, since each

update only requires a single environment transition.

The generalization of one-step TD is called n-step TD learning, and is

based on the next n rewards and the estimated value of the state n steps

later. The update rule thus involves n-step returns, defined as:

Gt:t+n =
n−1∑
k=0

γkrt+k + γnVt+n−1(st+n) (1.10)

After n steps are made, the n-step TD update rule can be applied:

Vt+n(st)← Vt+n−1(st) + α[Gt:t+n − Vt+n(st)] (1.11)

The value of n that results in faster learning in practice depends on the

problem and involves a trade-off: higher values of n allows a single update

to take into account more future actions, at the cost of performing the first

n without actually learning anything.

1.2.3 Function approximation and neural networks

In real world problems, we cannot hope to store a value for every single

state in the state space, as is required by tabular methods. This is because

state sets sizes are often exponential in the space required to represent a

single state, which is the case for the game we want to focus on, Rogue.
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In these cases we must to resort to function approximation, a scalable way

of generalizing from spaces much larger than computational resources. The

tools of choice for function approximation are artificial neural networks, par-

ticularly deep convolutional neural networks, that are behind many of the

recent successes in numerous fields of machine learning, especially computer

vision [40, 42] and RL [29, 35, 28, 47]

Neural networks (NNs) are one of the most used methods of nonlinear

function approximation. NNs are networks of interconnected units, the neu-

rons, inspired to biological nervous systems. To each interconnection is as-

sociated a real number: together these are the trainable parameters of NNs

and are often called weights. The neurons are logically divided in layers, con-

nected to those immediately preceding and following. The first layer is called

input layer, the last output layer and in between there can be an arbitrary

number of hidden layers: if these are present, the NN is referred to as a Deep

Neural Network (DNN).

The most used layers are:

Dense or Fully Connected (FC) computes xi,j = σ(
∑

k Wj,kxi−1,k) where

xi,j denotes the output of the j-th neuron of the i-th layer and W its

associated weight matrix. The function σ is the component that in-

troduces nonlinearity in NNs: usually a rectified linear unit (ReLU) is

preferred [32], defined as σ(x) = max{0, x}. The number of parameters

of this kind of layer equals to input dimension times output dimension,

so care should be taken when used on large inputs.

Convolution employs one or several windows, also called filters, that scan

the input by moving the window on top of it, producing an output for

each location. The window is moved according to stride values and its

weights, referred to as kernel, are very low in quantity: only the size of

kernel times the number of filters. Convolutions are known to be very

powerful feature extractors and are especially good at 2-dimensional

image processing, where they can learn to identify characteristics such

as edges or other very localized patterns.
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Recurrent layers are made of units that, in addition to the input from the

preceding layer, also receive their own output at the previous step,

called internal state. Via a built-in learned mechanism that combines

the two, the units may “forget” (part of) the internal state and consider

to a certain degree the input. Recurrent layers can thus be considered a

form of learned memory of past inputs. The Long-Short Term Memory

(LSTM) [18] was developed specifically to deal with the vanishing gra-

dient problem [17], which is a real issue with a naive implementation of

a recurrent network, because due to the chain-rule the gradient might

involve a large number of factors close to zero multiplied together.

In this work we will describe several network architectures mainly by using

images: refer to the legend in figure 1.2 for the meaning of each component.

C HxW,SHxSW@F
(activation)

M HxW,SHxSW

GM

LSTM
N

FC N
(activation)

Convolution with a HxW kernel, SHxSW strides and F filters.
Optionally it is followed by an activation function specified below.

Max-pooling with a HxW kernel and SHxSW strides.

Global max-pooling, equivalent to a max-pooling with a kernel
of HxW equal to its input dimensions.

LSTM with N units.

Fully-connected (or dense) layer with N units, optionally followed
by an activation function specified below.

Figure 1.2: Neural network legend
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1.2.4 The Deadly Triad

We face an important issue however if we combine function approxima-

tion, bootstrapping and off-policy training, known as the deadly triad [41].

The combination produces a well known danger of instability and divergence,

due to the following factors: the sequence of observed states presents cor-

relations, small updates in (action-)value function estimate may result in

a significant change in the policy and thereby alter the data distribution

(because an update could change which action maximizes the function es-

timate), and finally (action-)values and target values are correlated due to

bootstrapping. The deadly triad was successfully addressed in [29], although

only empirically without any theoretical guarantee, paving the way to a fair

amount of work, summarized in [26].

1.2.5 Q-learning and DQN

Q-learning [49, 48] is an off-policy GPI TD method for estimating Q ≈ q∗

demonstrated to converge to the optimal solution, at least in the tabular case,

so long as all actions are repeatedly sampled in all states and the action-values

are represented discretely, constituting one of the early breakthroughs in RL.

We present tabular one-step Q-learning in Algorithm 1. Since the interaction

with the environment is carried out by an ϵ-greedy policy on Q and its update

rule actually evaluates a completely greedy policy, the algorithm classifies as

off-policy.

A more recent breakthrough was achieved with Deep Q-Networks (DQNs)

in [29], combining Q-learning with nonlinear function approximation and

dealing with the deadly triad issue (section 1.2.4). In that work, deep convo-

lutional neural networks were used to approximate the optimal action-value

function q∗ and play several Atari 2600 games on the Arcade Learning Envi-

ronment (ALE) [6] directly from (almost) raw pixels, in many cases reaching

and surpassing expert human level scores. The results were very remarkable

because no game-specific prior knowledge was involved beyond the prepro-
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cessing of frames (that only consists in converting colors to luminance val-

ues, stacking the last 4 frames due to artifacts of the old Atari platform and

down-scaling them to save computational resources) and the very same set of

parameters was used across all games. The main elements that enabled the

success, addressing the instability issues, were experience replay and periodic

updates of target values. Experience replay is a biologically inspired mecha-

nism in which a number of state-action transitions (st, at, rt, s
′
t+1) are stored

and sampled for training, randomizing over the data hence reducing corre-

lations in the observation sequence and smoothing over changes in the data

distribution. The periodic update of target values, opposed to an immediate

one, is implemented by using two separate parameter (or weight) vectors θi

and θ−i . The two vectors represent, respectively, the DQN parameters used

to select actions and those used to compute the target at iteration i. The

target parameters θ−i are only updated with θi every C steps, adding a de-

lay that reduces correlation with the targets and making divergence more

unlikely. The authors also found that clipping the TD error term to be in

[−1, 1] further improved the stability of the algorithm. Pseudo-code is shown

in Algorithm 2.

The results of DQN were improved in [35] by prioritizing experience re-

play, so that important experience transitions could be replayed more fre-

quently, thereby learning more efficiently. The importance of experience

transitions were measured by TD errors, such that these were proportional

to the probability of being inserted in the experience memory buffer. The

authors also made use of importance sampling to avoid the bias in the update

distribution.

1.2.6 Policy gradient and REINFORCE

We turn now the attention to methods that directly learn a parametrized

policy without consulting (action-)value functions, called policy gradient meth-

ods. As with DQN, we will denote the parameters with θ and write π(a|s; θ)

for the probability of taking action a in state s with parameters θ. The most
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Algorithm 1 Tabular one-step Q-learning pseudo-code, adapted from [41]

1: initialize Q arbitrarily and Q(terminal-state, ·) = 0

2: for each episode do

3: initialize state s

4: for each step of episode, state s is not terminal do

5: a ← action derived from Q(s, ·) (e.g. ϵ-greedy)

6: take action a, observe r, s′

7: Q(s, a) ← Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)]

8: s ← s′

Algorithm 2 DQN pseudo-code, adapted from [29]

1: initialize replay memory D with capacity N

2: initialize action-value function Q with random weights θ

3: initialize target action-value function Q̂ with weights θ− = θ

4: for each episode do

5: initialize state s1

6: for each step t of episode, state st is not terminal do

7: at ←

random a with probability ϵ

argmaxa Q(st, a; θ) otherwise

8: take action at, observe rt, st+1

9: store transition (st, at, rt, st+1) in D

10: sample random minibatch of transitions (sj, aj, rj, sj+1) from D

11: yj ←

rj if sj+1 is terminal

rj + γ maxa′ Q̂(sj+1, a
′; θ−) otherwise

12: perform gradient descent step on (yj −Q(sj, aj; θ))2 w.r.t. θ

13: every C steps reset Q̂← Q, i.e. set θ− ← θ

important advantage over (approximate) TD methods is that the continuous

direct policy parametrization does not suffer from sudden changes in action

probabilities — one of the issues of the deadly triad — enabling stronger the-
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oretical convergence guarantees [41]. Moreover, policy gradient techniques

can express arbitrary stochastic optimal policies, which is not natural in GPI,

and π can approach determinism, while ϵ-greedy action selection always has

an ϵ probability of selecting a random action.

The REINFORCE [52] algorithm is a well known and simple Monte-

Carlo policy gradient method. Monte-Carlo algorithms are the extreme of

n-step methods on the opposite side of one-step TD. These methods always

use the length of the episode as n and do not bootstrap. As such they are

unbiased, but in practice exhibit greater variance and are slower to converge.

REINFORCE employs the following update rule, derived from the policy

gradient theorem [41]:

θt+1 = θt + αγtG∇θlog π(at|st, θt) (1.12)

Since the algorithm updates the same policy used for interacting with the

environment, it belongs to the on-policy category.

(1.12) can be generalized to include an arbitrary baseline, as long as it

does not vary with the action a:

θt+1 = θt + αγt[G− b(st)]∇θlog π(at|st, θt) (1.13)

The baseline can significantly reduce the variance of the update and thereby

speed up the learning process. Commonly, a learned estimate of the value

function, V (s; θv), is the choice for baseline. We denote its parameters with

θv to indicate at the same time that in general they can be independent

from the policy parameters θ, but in practice are shared to some degree.

For example, θ and θv could denote the weights of a neural network with

two separate output layers, one for π and the other for V , branching from

a common structure of hidden layers, i.e. all non-output layers are shared.

This is the case in the recent literature, e.g. A3C and ACER (figure 1.3), as

well as in all our architectures (figures 3.1 and 3.3).

We present the pseudo-code of REINFORCE with baseline in Algorithm

3.
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Algorithm 3 REINFORCE with baseline pseudo-code, adapted from [41]

1: initialize policy and state-value parameters θ and θv arbitrarily

2: for each episode do

3: generate a trajectory s0, a0, r0, . . . , sT , aT , rT following π(·|·; θ)

4: for each step t of episode do

5: Gt ← return from step t

6: δ ← Gt − V (st, θv)

7: θv ← θv + βδ∇θvV (st, θv) ▷ β ∈ [0, 1] is a step-size parameter

8: θ ← θ + αγtδ∇θlog π(at|st, θ)

1.2.7 Actor-Critic and A3C

Policy gradient methods that learn a value function and use bootstrap-

ping are called actor-critic, where actor references the learned policy while

critic refers to the learned value function. With bootstrapping, actor-critic

methods re-introduce the TD error in the update rule. This enables learning

to be fully on-line, on the contrary of REINFORCE, which as Monte-Carlo

method must experience an entire episode before learning can begin.

A simple one step actor-critic algorithm would use the following update

rule:

θt+1 ← θt + αγt(rt + γV (st+1; θv)− V (st; θv))∇θlog π(at|st, θ) (1.14)

The actor-critic framework has been the center of attention of the latest

RL endeavors [28, 37, 47, 19]. The Asynchronous Advantage Actor-Critic

(A3C) algorithm [28] is a particular method that improved the state-of-the-

art results of its time on Atari 2600 games and other tasks using several

parallel actor-critic learners independently experiencing the environment, a

component that stabilizes learning without the need for experience replay.

The parallel nature induced a faster learning time with less resources, using

moderately powerful CPUs instead of very powerful GPUs. The algorithm

selects actions using its policy for up to tmax steps or until a terminal state

is reached, receiving up to tmax rewards from the environment since its last

update. Then the gradients for n-step updates are computed for each of the
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state-action pairs encountered since the last update. Each n-step update

uses the longest possible n-step return: a one-step update for the last state,

a two-step update for the second last state, and so on. The accumulated

updates are applied in a single gradient step. This is done in a number

of parallel threads, each interacting with an independent instance of the

environment with a local copy (θ′ and θ′v) of a set of global parameters (θ

and θv), asynchronously updating the latter at each iteration in an intended

non thread-safe way in order to maximize throughput. A3C parameterize the

policy π and the baseline V with a neural network with two output layers,

see figure 1.3.

C 8x8,4x4@16
ReLU

C 4x4,2x2@32
ReLU

FC 256
ReLU

FC |A|
Softmax

π

FC 1

V

Input
HxWxL

Figure 1.3: A3C neural network

The A3C policy update rule is:

θt+1 ← θt +∇θlog π(at|st, θ)A(st, at; θ, θv) + β
k−1∑
i=0

∇θH(π(·|st+i; θ)) (1.15)

A(st, at; θ, θv) =
k−1∑
i=0

γirt+i + γkV (st+k; θv)− V (st; θv) (1.16)

where:

• k varies from state to state and is upper bounded by tmax;
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• A is an estimate of the advantage function aπ(st, at) = qπ(st, at)−vπ(st),

expressing the advantage of taking action at in state st and then acting

according to π;

• H is the Shannon’s entropy function, that the authors found to be

particularly helpful on tasks requiring hierarchical behavior, encourag-

ing exploration and preventing premature convergence to suboptimal

policies, with β controlling the strength of the entropy regularization

term.

The pseudo-code of an A3C actor-critic learner is shown in Algorithm 4.

A2C is the synchronous version of A3C, employed in [37] with the same

or better results than A3C. Synchronous means that the trajectories expe-

rienced by the parallel actor-learners are collected and a single parameters

update is computed. This allows a better exploitation of the parallel com-

puting power of a GPU, reducing the wall-clock time of training, but not the

actual number of training steps required to achieve a certain performance

measure.

A3C and A2C display an issue known as sample inefficiency: they require

a great amount of experience steps to reach a fixed performance score, much

more than, e.g., DQN. Even if at the end of the training they find better

policies, simulations steps can be expensive and sample efficiency become

crucial, even more so when agents are deployed in the real world.

1.2.8 ACER

The Actor-Critic with Experience Replay (ACER) algorithm [47] com-

bines the A3C framework with experience replay, marginal importance weights,

the Retrace target [31] to learn Q, a technique the authors call truncation

with bias correction trick and a more efficient version of Trust Region Policy

Optimization (TRPO) [36], improving on the sample efficiency of A3C. Due

to experience replay, ACER classifies as an off-policy algorithm.
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Algorithm 4 A3C pseudo-code for an actor-learner thread, adapted from

[28]

▷ assume global shared parameter vectors θ and θv

▷ assume global shared counter T = 0

▷ assume thread-specific parameter vectors θ′ and θ′v
1: initialize thread step counter t ← 1

2: repeat

3: reset gradients: dθ ← 0 and dθv ← 0

4: synchronize thread-specific parameters θ′ ← θ and θ′v ← θv

5: tstart ← t

6: get state st

7: repeat

8: sample at ∼ π(·|st; θ′)
9: perform at, observe rt, st+1

10: t ← t + 1

11: T ← T + 1

12: until terminal st or t− tstart = tmax

13: R ←

0 if st is terminal

V (st; θ
′
v) otherwise

14: for i← t− 1 down-to tstart do

15: R ← ri + γR

16: dθ ← dθ +∇θ′log π(ai|si; θ′)(R− V (si; θ
′
v)) + β∇θ′H(π(·|si; θ′))

17: dθv ← dθv + ∂
∂θ′v

(R− V (si; θ
′
v))

2

18: perform asynchronous update of θ using dθ and of θv using dθv

19: until T > Tmax
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In ACER, a neural network parameterize π and Q, instead of V as in

A3C, because the method is based on marginal value functions [13]. They

still make use of V as the baseline, which can be simply computed given π

and Q as per equation (1.3). Without TRPO, the ACER update rule would

be:

θt+1 ← θt + ρ̄t∇θlog π(at|st; θ)[Qret(st, at)− V (st; θv)]

+ E
a∼π

([
ρt(a)− c

ρt(a)

]
+

∇θlog π(a|st; θ)[Q(st, a; θv)− V (st; θv)]

)
where:

• Qret is the Retrace target [31];

• ρt is referred to as marginal importance weight and is expected to cause

less variance than a complete importance sampling ratio, since it does

not involve the product of many potentially unbounded factors;

• ρt(a) = π(a|st;θ)
µ(a|st) , where µ is the policy that was used to take the action,

which may differ from π during experience replay;

• ρ̄t = min{c, ρt} is the truncated importance weight, with c being its

maximum value. This clipping ensures that the variance of the update

is bounded;

• [x]+ = max{0, x}. This term in the lower part of the equation ensures

that the estimate is unbiased and activates only when ρt(a) > c and is

at most 1;

• The above two points make up the truncation with bias correction trick.

With TRPO, the update is corrected so that the resulting policy does

not deviate too far from an average policy network representing a mean of

past policies. The authors decompose the policy network in two parts: a

distribution f and a deep neural network that generates its statistics ϕθ(s),

such that the policy is completely characterized by ϕθ : π(·|s; θ) = f(·|ϕθ(s)).
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Algorithm 5 ACER pseudo-code for an actor-learner, adapted from [47]

▷ assume global shared parameter vectors θ, θv and θa

▷ assume ratio of replay r
1: repeat
2: call ACER on-policy
3: n ← Poisson(r)
4: for n times do
5: call ACER off-policy
6: until Max iteration or time reached

7: function ACER(on-policy?)
8: reset gradients: dθ ← 0 and dθv ← 0
9: synchronize thread-specific parameters θ′ ← θ and θ′v ← θv

10: if not on-policy? then
11: sample trajectory {s0, a0, r0, µ(·|s0), · · · , sk, ak, rk, µ(·|sk)}
12: else
13: get state s0
14: for i← 0 to k do
15: compute f(·|ϕθ′(si)), Q(si, ·; θ′v) and f(·|ϕθa(si))

16: if on-policy? then
17: sample ai ∼ f(·|ϕθ′(si))
18: perform ai, observe ri, si+1

19: µ(·|si) ← f(·|ϕθ′(si))

20: ρ̄i ← min
{

1,
f(ai|ϕθ′ (si))

µ(ai|si)

}
21: Qret ←

0 if st is terminal∑
a Q(sk, a; θ′v)f(a|ϕθ′(sk)) otherwise

22: for i← k down-to 0 do

23: Qret ← ri + γQret

24: Vi ←
∑

a Q(si, a; θ′v)f(a|ϕθ′(si))

25: g ← min{c,ρi(ai)}∇ϕθ′ (si)
log f(a|ϕθ′ (si))(Q

ret−Vi)

+
∑

a

[
1− c

ρi(a)

]
+
f(a|ϕθ′ (si))∇ϕθ′ (si)

log f(a|ϕθ′ (si))(Q(si,ai;θ
′
v)−Vi)

26: k ← ∇ϕθ′ (si)
DKL[f(·|ϕθa(si))||f(·|ϕθ′(si))]

27: dθ ← dθ +
∂ϕθ′ (si)

∂θ′
(g −max

{
0, k

T g−δ
||k||22

}
k)

28: dθv ← dθv +∇θ′v(Qret −Q(si, ai; θ
′
v))

2

29: Qret ← ρ̄i(Q
ret −Q(si, ai; θ

′
v)) + Vi

30: perform asynchronous update of θ using dθ and of θv using dθv

31: update the average policy network: θa ← αθa + (1− α)θ
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The update is constrained by the KL divergence between the distribution

derived from the current and the average policy. The parameters θa of the

average network are updated softly, whenever the policy is changed, by the

rule θa ← αθa + (1− α)θ. We present ACER pseudo-code in Algorithm 5.

1.3 RL applications

Videogames possibly represent the major RL domain and are certainly an

important AI test bed, but they are not by any stretch the only application

of the RL framework. In this section we outline some notable fields in which

RL has been used (for a more thorough description see [26]):

Games are useful AI benchmarks as they are often designed to challenge

human cognitive capacities. Many RL environments exist for games,

both for discrete and contiuos actions, such as the Arcade Learning

Environment (ALE) [6], featuring arcade Atari 2600 games, OpenAI

Gym [8], also featuring Atari games but also others involving contin-

uous actions, VizDoom [22], that allows interacting with the popular

Doom videogame, one of the fathers of First Person Shooter (FPS)

games and a StarCraft II environment [46], a very popular Real-Time

Strategy (RTS) videogame. The game of our focus is Rogue, that we

extensively describe in chapter 2.

Robotics [23] offers an important and interesting platform for RL: the real-

world challenges of this domain pose a major real-world check for RL

methods. Robotics usually involves controlling torque’s at the robot’s

motor, a task with continuous actions, harder than discrete actions

domains.

Natural Language Processing (NLP) where deep learning has recently

been permeating and RL has been applied, for instance, in language

tree-structure learning, question answering, summarization and senti-

ment analysis.
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Computer vision where RL has been used, e.g., to focus on selected se-

quence of regions from image or video frames for image classification

and object detection.

Business management can benefit from RL, for example, in commercially

relevant tasks such as personalized content or ads recommendation.

Finance offers delicate tasks suitable for RL such as trading and risk man-

agement.

Healthcare presents interesting and important tasks, e.g. personalized

medicine, dynamic treatment regimes and adaptive treatment strate-

gies, where issues that are not standard in RL arise.

Intelligent transportation systems where RL can be applied to impor-

tant and current tasks such as adaptive traffic signal control and self-

driving vehicles.



Chapter 2

Rogue

In this chapter we describe Rogue, the videogame of our focus, and why

it is an interesting problem for Reinforcement Learning (RL).
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Figure 2.1: A Rogue screenshot
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2.1 A game from the 80ies

Rogue, also known as Rogue: Exploring the Dungeons of Doom is a dun-

geon crawling video game, father of the rogue-like genre, by Michael Toy

and Glenn Wichman and later contributions by Ken Arnold. Rogue was

originally developed around 1980 for Unix-based mainframe systems as a

freely-distributed executable.

In Rogue, the player controls a character, the rogue, exploring several

levels of a dungeon seeking the Amulet of Yendor, located on a specific level.

The player must fend off an array of monsters that roam the dungeons and,

along the way, they can collect treasures that can help them, offensively or

defensively, such as weapons, armor, potions, scrolls and other magical items.

Rogue is turn-based, taking place on a grid world represented in ASCII char-

acters, allowing players unlimited time to determine the best move to survive,

while the world around is frozen in time. Rogue implements permadeath as

a design choice to make each action meaningful: should the player-character

lose all their health from combat or other means, the character is dead, and

the player must restart a brand new character and cannot reload from a

saved state. The dungeon levels, monster encounters, and treasures are pro-

cedurally generated on each playthrough, so that no game is the same as a

previous one. As the first game presenting these as its core mechanics, Rogue

is an important milestone in videogames history.

2.2 A difficult RL problem

There are many factors that make Rogue difficult and interesting for RL,

some of which have already been mentioned in the preceding section. Some

of these make it so hard that it is not conceivable to deal with them at

the current level of technology and state-of-the-art methods. The problem

has already been studied in previous work [34, 3, 4], for completeness we

summarize here the challenges offered by the game:
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POMDP nature Rogue is a Partially Observable Markov Decision Process

(see section 1.1.2). The layout of each level of the dungeon is initially

unknown and partially hidden, and is progressively discovered as the

rogue crawls the dungeon. Solving partially observable mazes is a no-

toriously difficult and challenging task [50, 41, 21] Deep learning ap-

proaches were investigated in [51, 21], however the considered problems

were different and simpler than the challenges offered by Rogue and in

the case of [21] the authors focused on imitation learning rather than

RL. Imitation learning is very akin to supervised learning, in which

a policy is learned from examples produced by another policy that is

generally supposed to be optimal (e.g. human expert actions).

Procedural generation and no level-replay Rogue dungeons are proce-

durally generated: whenever a new game is started (e.g. when the

player dies) the levels will be randomly generated and different from

previous ones. Replaying a previously experienced dungeon is thereby

forbidden, unlike most videogames that allow restarting the same level

without any alteration when losing. The procedural generation, even

if it has constraints (e.g. the number of rooms is at most nine), means

that level-specific learning can’t be deployed with good results. It has

been shown in [43] that simple convolutional networks can only learn to

navigate sufficiently small (8×8), completely observable 2-dimensional

grid mazes and are not able to generalize in larger spaces. The authors

argue that learning to plan seems to be required for this kind of task.

Complex mechanics The game offers many different challenges:

• exploring the dungeon searching for the Amulet;

• finding and descending the stairs to the next level;

• discovering hidden areas, which may even conceal the stairs or the

Amulet;

• fighting hostile monsters, avoiding death;
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• collecting items, such as food to avoid starving and weapons to

improve the chances of surviving fights;

• using the gathered items through the interaction with an inventory

menu.

Learning to successfully engage in all of these activities in a completely

end-to-end unsupervised way is a very difficult task, especially the dis-

covery of hidden areas and a sensible use of the inventory, possibly

beyond the current state-of-the-art.

Memory and Attention Both are important machine learning topics and

both seems to be important for Rogue.

Memory is needed, e.g., to remember whether the Amulet was recov-

ered because after that in order to win the game the stairs should be

ascended instead of descended, which are different actions. Another

scenario that requires memory is the discovery of hidden areas: sup-

pose that a corridor terminates in what appears to be a dead-end, but

actually continues into a room. If the wall is searched with a spe-

cific action it will reveal the continuation of the corridor, however the

number of times the action should be performed is stochastic, usually

requiring at most 10 attempts. Long-Short Term Memory (LSTM) [18]

neural network units seem to be the natural choice for tackling these

kind of issues and we will employ them in this work. LSTM units

have been used in other RL tasks with good results, some examples are

[51, 16, 19].

Attention is the ability to focus on specific parts of interest while ig-

noring others of lesser relevance, typical of human cognition. In Rogue,

the part of the screen immediately surrounding the player is the one

that most intuitively requires attention, especially for deciding the next

short term action. Attention has been extensively investigated in re-

cent works, such as [20, 15, 45], and seems to be a central topic for the

future of machine learning.
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Sparse rewards Rogue has no frequently increasing player score: there is

a status bar in the lower part of the screen, showing values such as the

current dungeon level, health and gold, however they vary sporadically.

The quantity of gold recovered can serve as a score measure, however it

is only minor with respect to the real objective of the game - recovering

the Amulet of Yendor - that determines whether the game is won or

lost. A game that was won is obviously better than one that was lost,

even if more gold was attained in the latter.

Being an environment with sparse rewards is a trait shared with Mon-

tezuma’s Revenge, renown as one of the most complex Atari 2600

games. Neither DQN, A3C or ACER were able to devise effective

policies for this game, where complex sequences of actions must be

learned without reinforcement before attaining any variation in score

and, thereby, reward. Devising some sort of intrinsic motivation seems

to be required for these kind of task, i.e. a problem independent re-

ward added to the environment’s own extrinsic reward. A successful

and theoretically based approach to this issue is presented in [5], where

the authors employ a count-based exploration bonus, designed to be

useful in domains with large state spaces where a state is rarely vis-

ited more than once. Good results were achieved even in Montezuma’s

Revenge using this approach.

2.3 Rogueinabox

In this work we develop RL agents in Python that interact with the game

via the Rogueinabox library1, developed in [34, 3] and updated in [4]. This is

a modular and configurable environment, that allows the use of custom state

representations and reward functions. To our knowledge, this is the sole AI

environment for Rogue, while for rogue-likes we are aware of [9] for Desktop

Dungeons and [24] for Nethack, an evolution of Rogue.

1https://github.com/rogueinabox/rogueinabox_lib

https://github.com/rogueinabox/rogueinabox_lib
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We contributed ourselves to the library, mainly by:

• Implementing in the Rogue source code the customization of several

options with command line parameters:

– Whether to enable monsters, implemented in [2] with a compile-

time flag;

– Whether to enable hidden areas;

– Random seed;

– Amulet level;

– Number of steps before the rogue is affected by hunger;

– Number of traps;

• Realizing an agent wrapper base-class and an implementation that

records all game frames on file;

• Refactoring several aspects;

• Allowing the users customize some library behavior;

• Documenting most of the code;



Chapter 3

Learning to play Rogue

In this chapter we describe our objectives, the simplifications we intro-

duced to the problem, our attempts to create an agent capable of learning

to play the game, the resulting policies and our evaluation metrics.

Our implementations use the Tensorflow library [1] for Python1, we will

link to each of them in the respective sections. In all of our experiments we

employ the RMSProp optimizer2, possibly the most popular gradient descent

algorithm in RL, used in [29, 28, 19, 43, 47]

3.1 Problem simplification

Due to the complex mechanics outlined in section 2.2 we introduced some

simplifications so that the problem becomes approachable with current state-

of-the-art methods. In particular:

1. We initially limited ourselves to find the stairs of the first level and

descend them, instead of looking for the Amulet of Yendor; given our

good results we later expanded on this, see section 3.2;

1https://docs.python.org/3.5/library/index.html
2http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.

pdf
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2. We disabled monsters and hunger, so that fighting and inventory man-

agement were not part of the problem;

3. We disabled hidden areas, aware of the difficulty of discovering them in

an end-to-end way, due to the unpredictable number of search actions

required to uncover them;

4. We drastically limit the number of actions available to our agents:

movement by one cell in the four cardinal directions and interaction

with the stairs (descent/ascent). The game actually encompasses a

much wider spectrum of commands, such as moving in a direction un-

til an obstacle, inspecting the inventory, equipping items, eating food,

drinking potions, etc.

What we were left with are randomly generated partially observable mazes,

that because of Rogue’s no-replay can only be experienced once. The result-

ing task is still challenging enough to be interesting (see section 2.2), but not

so difficult as to be unapproachable.

3.2 Objectives

In Rogue the player wins the game when, after descending a fixed number

of levels, they recover the Amulet of Yendor and climb back up through all

levels, although these are not the same that were descended. By default the

amulet is located at level 26 and we deemed this challenge too difficult for

learning agents, even with the simplifications previously described. Instead,

we formulate and tackle the following objectives:

1. Descend the first level;

2. Descend until the tenth level;

3. Recover the Amulet from early levels.
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3.3 Descending the first level

We set our first objective to develop an agent capable of reliably finding

and descending the stairs of the first level. By default this level has no hidden

areas, even if they are enabled.

Previous work [3, 4] employed DQN (section 1.2.5) and were able to de-

scend the stairs in the first level in 23% of games. In comparison, a completely

random agent attains 7%. They faced many problems, mainly their agent

did not seem able to learn to backtrack when it found itself at a dead-end

and had a hard time getting away from walls once it got next to them. We

overcame these issues with different algorithms, state representations and

reward functions. We devised two different approaches, that we describe in

this section.

3.3.1 Evaluation criteria

When developing several methods to solve a task it’s important to estab-

lish a well-defined set of metrics under which each different effort becomes

comparable. We expand on the criteria used in [4] and base our evaluation

on the following statistics:

1. The average number of episodes in which the agent is able to descend

the stairs; when this happens, we declare the episode won and reset the

game;

2. The average number of steps taken when climbing down;

3. The average return;

4. The average number of tiles seen;

Our emphasis is on the first two points, but we also keep an eye on the

others. In all of our experiments, we average these values over the most

recent 200 games played at a given training step. Since we always employ

several parallel actors, in the statistics we display in the various plots the
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values are the average over the averages of each actor. In these and all

other evaluation metrics, when victory conditions are not met within the

maximum amount of actions established, then the episode is considered lost

and the game reset.

Whenever two methods achieve the same results, we prefer the one that

employs the smallest number of non-learned features or mechanisms. When

they are equal even in that regard, we prefer the most sample efficient one,

i.e. that which produces such results in a lower amount of training steps.

3.3.2 Partitioned A3C with cropped view

We describe here our first approach3, that was published in [2] in collab-

oration with Francesco Sovrano — who developed most of the code — and

accepted to LOD 20184, the Fourth International Conference on Machine

Learning, Optimization, and Data Science. The method can be summarized

in the following points:

1. The A3C algorithm;

2. The use of situations, a technique we developed to partition different

category of states such that for each category a specific policy is learned,

parameterized by a specific neural network, a situational agent;

3. A cropped view, i.e. a representation of the Rogue screen centered on

the player and comprising only a portion of fixed size of their immediate

surroundings, cropping out everything outside of it;

4. A neural network with a Long-Short Term Memory (LSTM) layer;

5. A reward signal not only encouraging descending the stairs, but also

the exploration of the level and punishing actions that result in the

rogue not moving.

3https://github.com/Francesco-Sovrano/Partitioned-A3C-for-RogueInABox
4https://lod2018.icas.xyz/

https://github.com/Francesco-Sovrano/Partitioned-A3C-for-RogueInABox
https://lod2018.icas.xyz/
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Neural network architecture

In previous work [34, 3, 4] some forms of handcrafted non-learned memory

was used, such as a long-term heatmap with color intensities proportional to

how many times the rogue walked on each tile and a short-term snake-like

memory, representing the most recent rogue positions. These were provided

as input to the neural network, instead of using any type of recurrent neural

unit, which isn’t very satisfying from a machine learning perspective.

In this work we decided to forgo those kind of handcrafted memories

and employ in all of our neural network models a Long-Short Term Memory

(LSTM) layer, that we described in section 1.2.3. When using a recurrent

unit in RL we must take care how to perform backpropagation. There are

two important matters to consider: preserving the temporal sequence of the

steps — that both A3C and ACER pseudo code do not do (they actually

reverse it) — and which initial recurrent hidden state to use for gradient

descent. In our implementations we ensure the temporal preservation and

use different initial states for backpropagation in A3C and ACER. In the

former case, we store the recurrent state before each n-step update and then

employ it for gradient descent. In the latter case, we always use an hidden

state completely filled with zeros. Both approaches seem to perform equally

well and it would be interesting to test which one actually achieves better

results under identical circumstances. In appendix A some code snippets on

this issue can be found.

The architecture we used is shown in 3.1. The network is fundamentally

an extension of the structure used in A3C (figure 1.3): it consists of two con-

volutional layers followed by a fully connected (FC or dense) layer to process

spatial dependencies, then a LSTM layer to process temporal dependencies.

From here the structure branches into value and policy output layers. The

total number of parameters of this model is almost 3 millions.

The network input is the state representation that we describe later in this

section, while the LSTM also receives as input a numerical one-hot represen-

tation of the action taken in the previous state, concatenated to the obtained
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Figure 3.1: Neural network architecture for partitioned A3C

reward, inspired by [19]. Suppose that action aj was taken, then the one-hot

vector representing it is x such that xj = 1 and xi = 0 ∀ai ∈ A, i ̸= j.

This entails our network is actually computing π and V as a function of

(st, at−1, rt) rather than just st. Later we will employ ACER on the same

conditions as A3C: there the model will compute its output exclusively on

st, showing that the richer A3C input is not influential.

Situations

With the term situation we denote a subset of environment states sharing

a common characteristic, used to discriminate which situational agent should

perform the next action. Such an agent is parameterized by the neural net-

work model we just described and is completely independent from the others

and do not share any parameter. The only way they interact is by contribut-

ing to the same return: the update rule for each situational agent takes into

account the rewards received by the others that acted later. Please see the

pseudo-code in Algorithm 6 for more details. The situations partition the

task in a way that is reminiscent of hierarchical models [50, 10, 25], where

generally a top-level model selects which sub-level model should interact with

the environment, that at a later point returns control to the top-level system.

We experimented with three sets of situations, the first, that we call s4
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Algorithm 6 Partitioned A3C pseudo-code for an actor-learner thread

▷ assume global shared counter T = 0

▷ assume global shared parameter vectors θz and θz,v for each situation z

▷ assume thread-specific parameter vectors θ′z and θ′z,v
1: initialize thread step counter t ← 0

2: repeat

3: for each situation z do

4: reset gradients: dθz ← 0 and dθz,v ← 0

5: synchronize local parameters θ′z ← θz and θ′z,v ← θz,v

6: tstart ← t

7: get state st

8: repeat

9: compute situation zt from st

10: sample at ∼ π(·|st; θ′zt)
11: perform at, observe rt, st+1

12: t ← t + 1

13: until terminal st or t− tstart = tmax

14: T ← T + (t− tstart)

15: Rt ←

0 if st is terminal

V (st; θ
′
zt,v) otherwise, zt computed from st

16: for i← t− 1 down-to tstart do

17: R ← ri + γR

18: dθzi ← dθzi +∇θ′zi
log π(ai|si; θ′zi)(R− V (si; θ

′
zi,v

))

+ β∇θ′zi
H(π(·|si; θ′zi))

19: dθzi,v ← dθzi,v + ∂
∂θ′v

(R− V (si; θ
′
zi,v

))2

20: for each situation z do

21: perform asynchronous update of θz using dθz and of θz,v using dθz,v

22: until T > Tmax
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listed below from higher to lower priority:

1. The rogue stands on a corridor;

2. The stairs are visible;

3. The rogue is next to a wall;

4. Any other case.

The situations are determined programmatically and are not learned. When

multiple conditions in the above list are met, the one with higher priority

will be selected. For instance, if the stairs are visible but the rogue is walking

on a corridor, the situation is determined to be (1) rather than (2), because

the former has higher priority.

We define the second set of situations s2 as :

1. The stairs are visible

2. The stairs are not visible

and the third set, s1, has no situations at all or, equivalently, a single situa-

tion.

State representation

The state is a 17 × 17 matrix corresponding to a cropped view of the

map centered on the rogue (i.e. the rogue position is always on the center of

the matrix). This representation has the advantage to be sufficiently small

to be fed to FC layers and implicitly represents the position of the player.

Moreover, in principle it could be used for any 2-dimensional maze arbitrarily

larger than Rogue.

In our experiments we adopted two variations of the above matrix. The

first, called c1, has a single channel, resulting in a 17 × 17 × 1 shape, filled

with the following values:

4 for stairs
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8 for walls

16 for doors and corridors

0 everywhere else

The second variation, called c2, is made of two channels: one entirely dedi-

cated to the stairs and the other to the rest of the environment. The state

representation thereby has shape 17× 17× 2, with the following values:

First channel

8 for walls

16 for doors and corridors

0 everywhere else

Second channel

4 for stairs

0 everywhere else

Previous work [34, 3, 4] did not use a cropped view, but rather employed

a representation of the entire map not centered on the rogue. This is similar

to what we make use of in section 3.3.3 (where we shall describe it in more

details), albeit at a slightly higher level of abstraction and with the addition

of handcrafted memory that we discussed earlier in the subsection related to

the neural network.

Reward signal

We designed the following reward function:

+1 when stepping on a door for the first time from the inside of a

room

+1 when one or more doors are discovered
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+10 when the agent descends the stairs

-0.01 when the agent remains stationary, e.g. tries to move into a

wall

0 otherwise

The reward values are chosen such that a significant amount of it can be

gained only by descending the stairs, while the rest for exploring the dungeon.

Each floor contains at most 9 rooms and each room no more than 4 doors,

thus only about 2
3

of the cumulative reward is awarded for exploring, while

negative rewards are enough to teach the agent not to take useless actions

but not significantly affect the balance between level exploration and stairs

descent.

In previous work [34, 3, 4] a similar reward function was used, that differs

in encouraging the discovery of new tiles (more general than our version, but

less sparse) and a small negative “living” reward, given for each step.

Hyper-Parameters

Each episode lasts at most 500 steps/actions and may end sooner if the

agent achieves success (i.e. descends the stairs). The rogue cannot die, since

monsters are disabled and the default number of steps before hunger begins

to affect the player is 1300. Most hyper-parameters values we used are from

[27], an Open-Source implementation of [19], upon which we based our own.

The values are summarized in table 3.1. The learning rate is annealed over

time according to the following equation: α = η · Tmax−T
Tmax

, where Tmax is the

maximum global step, and T is the current global step.
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Parameter Value

parallel actors 16

episode max length 500

entropy β 0.001

discount factor γ 0.95

batch size tmax 60

initial learning rate η 0.0007

rms decay 0.99

rms momentum 0

rms epsilon 0.1

rms clip norm 40

Table 3.1: Hyper-parameters for partitioned A3C with cropped view

Results

Agent s1-c2 s2-c2 s4-c1 s4-c2

Success rate 0.03% 98% 96.5% 97.6%

Avg return 16.16 17.97 17.66 17.99

Avg number of seen tiles 655 386 366 389

Avg number of steps to succeed 2 111 108 110

Table 3.2: Partitioned A3C with cropped view final results

We plot our results in figure 3.2 and summarize them in table 3.2. Our

best agent5 shows remarkable skill in searching for the stairs and descending

them. In particular, it has little troubles in backtracking through already

explored parts of the labyrinth when coming at an impasse and rarely displays

“uncertainty” (e.g. stepping left and then immediately right). Rarely does

not mean never, of course: in certain dead-end scenarios the agent starts

moving erratically without an obvious destination, remaining in the same

room and exceeding the maximum number of steps per episode. We noted

however that in a few cases, if given more time, it would eventually enter a

corridor and successfully retrace its steps and find the stairs.

5A video of our agent playing is available at https://youtu.be/1j6_165Q46w

https://youtu.be/1j6_165Q46w
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Figure 3.2: Results of partitioned A3C with cropped view

The most successful set of situations proved to be s2, showing that the

other situations in s4 only produce noise. Set s1 on the other hand completely

failed at the task; as can be seen in figure 3.2a the configuration s1-c2 gener-

ated a policy that completely ignored the stairs. Generally we noted that all
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situational agents not assigned to the “stairs are visible” situation learned to

completely avoid the descent action: this is a reasonable outcome, because

that action is never useful in those circumstances, however we believe this

was exacerbated by the negative reward for standing still. Even being so

small, it gives an immediate feedback for the descent action when performed

anywhere else than on top of the stairs. This, combined with the easier

rewards attainable by stepping on new doors and discovering rooms is the

cause of the failure of s1. In section 3.3.3 we in fact show that rewarding

only stairs descent leads s1 to good results without changing anything else.

The experiment with 4 situations resulted in the development of the pecu-

liar inclination for the agent of walking alongside walls, that is not observed

with 2 situations, possibly exploiting what the neural network assigned to

the “next to a wall” situation learned. This is arguably due to the combina-

tion of the easier subtask of following walls with respect to walking without

anything around and the reinforcement of this behavior whenever a reward is

obtained for following it, which frequently happens when stepping on a door

for the first time and then proceeding to a new room. Moreover, we noted

in all agents the tendency of taking a couple of steps in all doors of small

rooms, an artifact possibly due to the reward function.

Finally, state representation c2 induced faster learning, but not a signifi-

cantly higher success rate.

Keras implementation issues

In order to increase readability and consistency with previous work we

attempted to implement our agents with the Keras [11] library, however we

were unable to reach the same scores.

We faced multiple issues during the translation, mainly:

• Keras’ high level interface made us unable to abstract from the un-

derlying tensor library (Tensorflow), due to undocumented exceptions

raised when using threads;
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• The number of training steps performed per hour halved with respect

to Tensorflow;

• The learning was completely unsatisfactory using the native RMSProp

optimizer implemented in Keras (with the same parameters employed

in Tensorflow). The agent learned to prefer a single action over all

others, obviously with very poor results;

• Even when making use of Tensorflow’s optimizer, the agent only learned

to explore the level without descending the stairs. It would get stuck

when, in order to visit new rooms, it needed to backtrack through al-

ready visited portions of the map and it learned to ignore the stairs

almost completely. The differences in the code are only in the thread

bootstrapping phase and in the neural network model implementation.

If we converted the Tensorflow’s learned weights to Keras and let the

agent play, it would achieve the same scores. We then turned to com-

pare the single updates computed by Keras and Tensorflow on random

data. We noted that they differ by an absolute value of ∼ 10−2, how-

ever this difference would not increase over any number of consecutive

updates. Moreover the relative order of the learned action probabilities

would remain the same.

Due to time constraints we could not figure out where the problem lies. Since

recently Tensorflow’s API has become much more readable and Keras-like,

and due to the faster experienced training time, we decided to stick with that

implementation.

3.3.3 Towers with A3C and ACER

In this section we present our second approach6 to descending the first

level. The main motivation behind this effort was to resolve some of the

unsatisfying aspects of the previous solution. In particular:

6https://github.com/rogueinabox/openai_acer, commit tagged v0.8

https://github.com/rogueinabox/openai_acer
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1. The programmatic non-learned situations seem to be too much of a

facilitation for the agents;

2. The cropped view, which also removes some difficulty from the task,

specifically by not requiring to learn any generalization from the posi-

tion of the rogue, which is always the center of the state representation;

3. The reward signal seems to be too informative and the source of arti-

facts in the learned policy, that we discussed in the results of section

3.3.2.

Our aim was to work out these issues while still achieving a comparable

success rate. The first step was to deal with points (1) and (3). By evaluating

A3C with the neural network structure described in figure 3.1, using no

situations and only rewarding stairs descent, we obtained a 91% success rate

(figure 3.4a).

This is a promising result, that inspired us to proceed to address issue

(2) while simultaneously improve the performance of the agent. This is more

delicate of a facet: the convolutions in the neural network previously em-

ployed do not reduce the dimensionality of the input, they actually increase

it due to the number of filters. Since the convolutions are immediately fol-

lowed by a FC layer, enlarging the input size in order to encompass the entire

screen would further increase the already substantial number of parameters,

requiring much more training steps, time and memory. To face this problem,

we decided to employ the network architecture used in [34, 3, 4], a structure

with three towers that we describe later in this section.

The main ingredients of this approach can be described as follows:

1. The A3C and ACER algorithms;

2. A state representation encompassing the entire map that is not centered

on the rogue;
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3. The three towers neural network architecture, that is able to process

the above mentioned state with a limited number of parameters and

training time;

4. A reward function that only encourages descending the stairs.

ACER

We decided to experiment with this algorithm because we expected that

given the complete state representation A3C would have required more train-

ing steps to achieve good success rates. ACER was designed to be more

sample efficient (see section 1.2.8), while still remaining very similar to A3C.

We base our implementation on the OpenAI baselines repository [14], that

employs a synchronous version of ACER (which is to ACER what A2C is

A3C, see section 1.2.7), in order to fully exploit our GPU. In order to test

if ACER would actually reduce the required training steps, we performed a

couple of experiments:

1. We attempted to reproduce the results we described earlier in this

section, i.e. the 91% success rate by employing a cropped view and re-

warding only descending the stairs. We were unable to reproduce them,

as we show in 3.4a: the ACER agent would reach ∼ 55% success rate

much more quickly than A3C, however it would not progress further. In

order to verify if this was due to different optimizer hyper-parameters

(that we describe later), since we first used the default values proposed

in the OpenAI’s implementation. We tested both with the same val-

ues we used for A3C and also with intermediate values. In the first

case, the agent would not learn anything, i.e. the success rate would

remain below 10% in the first 20 or so million steps. We did not let it

proceed further than that because our main reason to employ ACER

is to have faster training. In the second case, we obtained the same

training progression described earlier: quickly reaching ∼ 55% success

rate then indefinitely oscillating below that. We are baffled by these
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results, especially considering those we will describe in the next point.

Because of time constraints and limited resources we were unable to

further experiment on this, however it remains a point of interest.

2. We then compared A3C and ACER with the complete state represen-

tation the three towers network model. ACER learned much faster and

reached remarkable results under the hyper-parameters we will describe

later in this section, in part derived from the OpenAI’s implementation.

We show this comparison in 3.4b: A3C learns very slowly, but surely,

approaching a 90% success rate at 100 million training steps. ACER

on the other hand learns much more quickly achieving, 90% as soon as

19 million steps, then 97% at 36 millions and finally 98% at 76 million

steps. We expected a similar outcome in the previous case as well: the

issue remains unsolved.

Neural network architecture

The three towers model is shown in 3.3 (for ACER). The state representa-

tion is processed in three separate and independent branches, each of which

we call a tower. This architecture was devised and first used in [34, 3], for

completeness and since it is an important part of our work, we shall describe

it in this work as well. The three towers can be divided in two categories:

Local vision tower It comprises a couple of convolutional layers without

any non-linear activation function, then a max-pooling the size of the

entire 22× 80 input to extract the maximum value for each filter. The

intent of this structure is to provide a form of attention that the model

will learn where to focus via high convolutional activations. We employ

a single tower of this kind.

Global vision tower It is made of an initial max-pooling layer, followed

by two convolutional layers, each employing the ReLU activation func-

tion, then a final max-pooling layer that extracts the maximum value

for each convolutional filter. This kind of tower is meant to capture
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Figure 3.3: Three towers neural network architecture for ACER

high level features of the entire map, e.g. in the case of Rogue the

positions of key points such as the doors and the stairs. We make use

of two towers of this type, with a different initial max-pooling window.
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The output of the towers is merged and then fed to an LSTM. In the A3C

version, as in partitioned A3C, the LSTM is also provided with the concate-

nation of a one-hot representation of the previous action taken and the reward

obtained. In ACER however we do not provide this input. The network then

branches again into a policy and, in the case of A3C, a value layer, while

in the case of ACER an action-value layer. The total number of parameters

of this model is ∼ 406 thousands, which is lower than what we needed in

partitioned A3C by a factor of ∼ 7.

State representation

The state representation we used is slightly more elaborated than the

one described in the previous section. As mentioned earlier, it encompasses

the entire map and is not centered on the rogue, requiring some abstraction

on its position to be learned. Just like in partitioned A3C, the state is

implemented as matrix, this time with shape 22× 80 (i.e. the dimensions of

the screen in ASCII characters, minus the top and bottom rows, that provide

text messages with information that we don’t need yet). We experimented

with several variations, each composed of a different number of layers. Our

intent was to provide the model with a representation of the Rogue screen

that is as close as possible to what a human see. Under this perspective, the

first version we employed is composed of two channels, that we call f2, with

the following values:

First channel

1 for walls

10 for doors and corridors

0 everywhere else

Second channel

10 for stairs
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1 for the rogue position, that would overwrite the stairs if the rogue

is exactly on top of them (just like in the game screen)

0 everywhere else

Since the performance we obtained with f2 was very disappointing (please

see the results at the end of this section for more details), we elaborated two

similar representations, f4 and f5, the first filled as follows:

First channel

1 for walls

0 everywhere else

Second channel

1 for doors and corridors

0 everywhere else

Third channel

1 for floor tiles

0 everywhere else

Fourth channel

10 for stairs

1 for the rogue position (overwriting the stairs if they are below the

rogue)

0 everywhere else

f5 is analogous, however the fourth layer is dedicated to the stairs and a fifth

is used for the rogue position.

Previous work [34, 3, 4] used a quite similar level of representation, with a

slightly higher level of abstraction. The authors used a channel marking tiles
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the rogue can walk on, another highlighting the position of doors and two

layers equivalent to ours, marking the position of the rogue and of the stairs.

In addition to this, one of the handcrafted forms of memory we mentioned

in section 3.3.2 was supplied as a supplementary channel.

Due to time and resources constraints, we were unable to thoroughly test

all the state representations presented, nor to search for the most compact

one that would achieve high performance. We anticipate that f5 lead to the

best results. This is not completely satisfying, because all those different

layers are not the way the state is presented by the game, especially not the

channel dedicated to the stairs, which makes them visible even if the rogue is

on top of them. The visibility issue anyhow is also present in the cropped view

of partitioned A3C, so in this sense we are not providing the model a more

informative input. Even if f5 might facilitate learning, we deem this to be a

minor simplification with respect to the cropped view and the non-learned

situations of partitioned A3C. We also bring forward another consideration:

in all of the state representations we built every “pixel”, i.e. matrix cell,

is important because it stands for an entire, sometimes independent, entity:

e.g. a door, the rogue or a floor tile that can be walked on. The same is not

true for Atari 2600 games for instance: each pixel is just a part of a larger

entity, such as a space ship or a ball, that are made of many adjacent pixels.

We are not certain how this difference could affect learning, given a single

layered state representation. Possibly this should be taken into account when

designing the neural network: under this perspective the fact that we need

5 layers to achieve good results may be the indication that the three towers

model is not adequate, either in its entirety or in some parts of it, e.g. the

number of convolutional filters or kernel sizes.

Reward signal

In these experiments we used the most simple reward function possible:

a positive reward (with value 10) for descending the stairs and zero for ev-

erything else. This choice follows mainly two considerations:
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1. We wanted to assess how well the agent could do if awarded only when-

ever it did what we wanted it to learn: finding and descending the

stairs;

2. We did not want to introduce any bias in the agent behavior.

For the task at hand this reward proved to be adequate, as can be seen from

the results discussed later in this section.

Hyper-Parameters

The hyper-parameters selection is totally unvaried for the A3C implemen-

tation, while there are some differences for ACER especially in the optimizer

parameters, that correspond to the defaults from the OpenAI’s implementa-

tion, due to the poor results we discussed earlier in the ACER subsection.

Episode length and termination condition are unvaried from partitioned A3C,

section 3.3.2. and so is the learning rate linear annealing. The values are

summarized in table 3.3.

Parameter Value

parallel actors 16

episode max length 500

entropy β 0.01

discount factor γ 0.99

batch size tmax 60

ACER memory buffer size 50000

ACER replay ratio r 4

ACER importance weight clipping c 10

ACER average policy α 0.99

ACER KL divergence constraint δ 1

initial learning rate η 0.0007

rms decay 0.99

rms momentum 0

rms epsilon 1e−5

rms clip norm 10

Table 3.3: Hyper-parameters for ACER
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Figure 3.4: Results of A3C and ACER without situations and rewarding only

stairs descent

We show our results in the following plots: in figure 3.4a A3C vs ACER

with cropped view, in figure 3.4b A3C vs ACER with f5 and the three towers

network. In table 3.4 the final scores are summarized.

Agent A3C-c2 ACER-c2 A3C-f5 ACER-f5

Success rate 90.84% 55.25% 87.25% 98.69%

Avg number of seen tiles 356 284 354 385

Avg number of steps to succeed 115 99 113 119

Table 3.4: Final results of A3C and ACER without situations and rewarding

only stairs descent

The first figure presents the baffling results we discussed in the ACER

section previously. All our attempts at varying hyper-parameters toward the

values used for A3C resulted in the same ACER learning progression, or
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Figure 3.5: Comparison between our previous best results; here *-f5 means

towers with complete map representation f5, *-c2 stands for cropped view

state c2 and *-s2c2 partitioned with situations set s2, cropped state c2 and

rewarded exploration

no progression at all (always under 10%) with the same A3C parameters.

We could not figure out the reason behind this, especially considering the

other results we obtained. This may be an interesting subject of research, if

anything to gain more insight on the algorithms.

The second figure displays the learning speed of ACER relative to A3C:

if the latter approaches 90% at 100 million training steps, the former has

already reached that mark by 19 million steps, then proceeds to 97% by 36

millions and, finally, to 98% 76 million steps. With these results we match

what we achieved with partitioned A3C and cropped view, foregoing all the

facilitations we were unhappy about that we discussed at the beginning of

this section. The price we paid is a slightly richer state representation, which

doesn’t provide more information than the cropped view (except everything

outside of it), but arguably makes it easier to process by a neural network.

As we mentioned, due to time and resource constraints we were unable to

thoroughly test many different state representations. We experimented A3C
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with f2, but found it could not achieve more than 12% within 30 million steps.

Coupled with f4 the algorithm performed slightly better and we suspect

that it could eventually achieve interesting results, however we decided to

interrupt it and focus on f5. This remains an interesting area to improve

upon: as we mentioned in the state representation subsection earlier, these

difficulties may be due to an inadequate neural network structure that is

unable to extract relevant features, maybe because of an insufficient number

of convolutional filters or layers.

The learned policy is able to backtrack its steps in many cases, just like

the situational agents of partitioned A3C. The bias in the agent’s behavior

we were concerned about in the previous section, i.e. taking a step in all

corridors of small rooms, is no more. It is however replaced by another, more

understandable, bias: the tendency to attempt the descent action very often,

even when they are not visible. Being the only source of reward, this was

probably a predictable outcome.

3.4 Descending until the tenth level

The good results we achieved pushed us to test how far our agent could

crawl in the dungeons. We thus set up a new experiment in which we allowed

the agent to descend as far as the tenth level.

Here another important simplification that we mentioned in section 3.1

comes into play: from the second level onwards some areas of each level may

be hidden in such a way that a stochastic number of actions is required to

uncover them. The sections that could be hidden might also enclose the

stairs, requiring the player to learn to habitually search (with a dedicated

action) what appears to be a dead-end to a corridor or a room without visible

doors. We deemed this to be too hard to learn for our model and thereby

disabled the hidden areas.

An interesting aspect that we will evaluate is how well our agent deal

with dark rooms and labyrinths (figure 3.6). The former are rooms where
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only the cells immediately surrounding the rogue are displayed on the screen.

The walls of such rooms are not shown when it is first entered, however they

remain visible once discovered for the first time. The same holds for stairs

and items, but not for floor tiles or monsters. The labyrinths are exactly

what the name suggests: dense webs of corridors with numerous branches

and dead-ends.

3.4.1 Evaluation criteria

The metrics we use for this task are the natural extension to those we

described in section 3.3.1. We average the number of levels descended per

episode, how many times each one is climbed down and the number of steps

it took over the most recent 200 episodes played at a given training step.

When the tenth level is reached, the episode is won and we reset the game.

3.4.2 Towers with ACER

We employ the same configuration that lead to very good results in section

3.3.3, i.e.:

1. The ACER algorithm;

2. The three towers neural network model;

3. The f5 state representation,

4. The reward function that directly encourages only descending the stairs;

5. The hyper-parameters of the previous section, except the maximum

number of steps per episode — that we set to 1200 — since on average

it took ∼ 120 steps to descend the first level and 120 · 10 = 1200.

State representation

We noted that due to implementation details, the f5 state representation

would have retained displaying those tiles in dark rooms that are hidden
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Figure 3.6: (a) Dark rooms (b) A labyrinth (surrounded by dark rooms)

when the rogue moves away. We thus decided to test to what degree this

would have influenced the agent’s behavior, with respect to a representation

that instead hide such tiles like in the game screen. The first will be denoted
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as f5r, where r stands for remember, and f5f, where the second f stands for

forget.

Results
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Figure 3.7: Results of ACER with Towers descending until the 10th level

The results are shown in figure 3.7 and table 3.5. The scores are not

what could be expected: given the 98% success rate on the first level, one

could estimate that reaching the tenth, thereby descending 9 levels, would

happen 0.989 ∼ 83% of the times. Our agent however really struggled to get

there, finding its way to the tenth level on average in only 15 games out of

100 when aided by f5r and almost 9 when using f5f. We speculate that the

substantial difference from the expectation of 83% is due to dark rooms and

labyrinths. In order to look at the issue more clearly, we tested how many

times our agent would fail due to those reasons. That is, we checked the

number of levels where it was not able to find and descend the stairs and
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Success rate

Level 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

f5r 98.47% 95.62% 91.37% 84.41% 74.44% 61.12% 44.75% 28.25% 15.19%

f5f 97.72% 93.41% 86.19% 76.56% 63.62% 47.03% 29.91% 17.34% 8.78%

random 15.50% 3.00% – – – – – – –

Avg number of steps to succeed

Level 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

f5r 131 263 405 546 667 771 856 923 958

f5f 140 287 434 581 705 805 873 922 954

random 350 668 – – – – – – –

Average levels descended

State Value

f5r 5.9

f5f 5.2

random 1.9

Table 3.5: Final results of ACER descending until the tenth level

how many steps it took there. We show these statistics in figure 3.8 and table

3.6. The numbers tell us that labyrinths are quite hard and only 48% of

them are overcome, while levels with dark rooms are easier and successfully

navigated ∼ 85% of the times. Even though the aren’t enough labyrinths

levels to justify the poor performance on reaching the tenth level, we can see

that the number of steps taken there and where dark rooms are present is

higher than the average number required when they are absent. They are

also much higher than for the first level, where 120 were enough on average.

Given these numbers, we expected that the agent could do better if given

more than 1200 actions and in table 3.7 we show statistics for 2000, 3000 and

even 10000 maximum steps. The latter is unreasonably high, it only serves as

a sort of asymptotic analysis of the behaviors and we won’t consider it in the

following discussion. From the table its clear that simply incrementing their

number, without any re-training, greatly and positively impacts on the agent

performance. f5r with 2000 maximum steps outperforms the naive estimate
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Level 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

DRs 0% 20.72% 37.34% 48.79% 50.64% 60.95% 62.42% 63.78% 62.98%

Ls 0% 2.26% 2.62% 2.42% 3.17% 2.72% 5.07% 3.11% 2.42%

DR+Ls 0% 0.62% 1.67% 3.96% 5.86% 4.90% 9.15% 9.78% 9.00%

(a) Level by level statistics; we denote dark rooms with DRs, labyrinths with Ls

and levels containing both of them with DR+Ls

Statistic Value

Avg steps per level 170

Avg steps per level with dark rooms 234 (+38%)

Avg steps per level with labyrinths 447 (+163%)

Avg steps per level with both 428 (+152%)

(b) Steps statistics

Table 3.6: Dark rooms and labyrinths statistics produced by f5r in 1000

episodes

of a 0.98i success rate on the i-th level until the sixth, where it starts to

deteriorate. The difference from 2000 to 3000 steps is especially significant

for f5f, while for the other state representation was beneficial only for the

seventh level onwards.

In the various plots and tables we can see the difference between state

representation f5r and f5f. We did not expect it to be as significant as to

determine such a gap in the success rate, although the discrepancy in the

average number of levels descended per episode is not as pronounced: 0.7

with both 1200 and 3000 maximum steps and 1.5 with 2000. In any case this

proves that dark rooms provide yet another difficult and interesting challenge

in Rogue. It is not clear if f5r only speeds up learning or if it allows our

agent to achieve results it could not attain otherwise. It is plausible that

given more training time our model could have reached better results, since

all scores from the second level onwards are in an ascending trend. Perhaps

training exclusively on each of these levels can shine light on this matter.
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DRs surpassed : 33.56 %

DRs failed : 6 %

Ls surpassed : 1.02 %

Ls failed : 1.16 %

DR+Ls surpassed : 2.04 %

DR+Ls failed : 2.18 %

Others surpassed : 51.06 %

Others failed : 2.98 %
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Figure 3.8: Dark rooms and labyrinths statistics produced by f5r in 1000

episodes; we count a failure in dark rooms or labyrinths only if the agent took

at least 60 steps in that level; we denote dark rooms with DRs, labyrinths

with Ls and levels containing both of them with DR+Ls.
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Success rate with 2000 maximum steps

Level 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

f5r 99.00% 99.00% 97.50% 93.00% 91.00% 83.50% 76.00% 68.50% 54.50%

f5f 98.00% 94.00% 88.00% 78.00% 67.50% 58.50% 46.50% 36.00% 26.50%

random 20.50% 1.50% – – – – – – –

Success rate with 3000 maximum steps

Level 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

f5r 99.50% 98.50% 96.50% 94.00% 90.00% 83.00% 78.50% 73.00% 64.50%

f5f 99.00% 96.50% 93.50% 88.00% 82.00% 75.50% 67.00% 59.00% 50.00%

random 19.50% 1.50% 0.50% – – – – – –

Success rate with 10000 maximum steps

Level 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

f5r 99.00% 98.50% 97.00% 92.50% 90.00% 87.00% 83.50% 75.50% 71.00%

f5f 99.00% 97.00% 91.00% 86.00% 81.50% 75.50% 64.50% 56.00% 49.00%

random 37.50% 13.00% 3.50% 1.50% 1.00% – – – –

Average levels descended

Max steps State Value

2000

f5r 7.6

f5f 5.9

random 2.2

3000

f5r 7.8

f5f 7.1

random 2.2

10000

f5r 7.9

f5f 7.0

random 5.7

Table 3.7: Results of ACER descending until the tenth level with more max-

imum steps per episode, sampled over 1000 episodes

3.5 Recovering the amulet from early levels

Our last efforts had us test if our agent could find the amulet and then

win the game if the jewel was placed in an early level, specifically the first

and second. After recovering the relic, the agent has to find and ascend the

stairs on each level traversed, including the first; if it is able to do this, the
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game is won.

We argue (and later show) that this task would become very hard should

the amulet be placed on lower levels and the agent only rewarded for recov-

ering it and winning, like we do. In fact, it would require to learn complex

and long sequences of actions without any reinforcement, i.e. finding and

descending the stairs of all levels above the amulet. This becomes evident in

section 3.5.3.

For these new endeavors we persist with our ACER configuration, slightly

tweaking it by:

1. Adding a layer in the f5 state representation, showing the position of

the amulet with a 1 and 0 in all other positions, that we call f6;

2. Positively rewarding stepping on the amulet and winning the game;

anything else is rewarded with 0.

Here a simplification that was irrelevant in the previous efforts should

have come into significant play: when the rogue reaches the amulet level, the

descent action is turned into ascent until the end of the episode. Rogue allows

descending further than the amulet level, however climbing up is permitted

only when possessing the amulet; thereby, it is possible to permanently pre-

vent any chance of winning a game. This solution that we introduced is

probably unneeded if the amulet is placed in the first level, as the agent

would, most likely, eventually learn to ignore the descent action. When how-

ever the jewel is placed on lower levels it should be of crucial aid, preventing

difficulties that we are not ready to deal with yet. We will actually show in

the experiment of section 3.5.3 that this simplification does not even have

the chance to play any role.

3.5.1 Evaluation criteria

We expand on the metrics outlined in section 3.3.1 simply by averaging

the number of times the amulet is recovered, in addition to all previous

statistics.
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3.5.2 First level

The main point of interest of this experiment is especially to assess how

much harder this task is with respect to simply finding and descending the

stairs and to evaluate the navigation skills of our agent once it has recovered

the amulet and already discovered the stairs location. With respect to these

issues, we obtained interesting and partially unexpected results.

Here we set the maximum amount of steps per episode back to 500.

Results
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Figure 3.9: Results of ACER recovering the amulet from the first level

We show the results of this experiment in figure 3.9 and table 3.8. As

expected this task is harder than simply descending the first level, even

more so than what we thought. Intuitively one could estimate that first

discovering the amulet and then the stairs would be close to locating the

latter two consecutive times. If this was true, given a 98% success rate for

finding the stairs of the first level, the success rate for this new task would

have been similar to 0.982 ∼ 96%. Our experiment tells a different story

however: because our agent is able to accomplish its goal only ∼ 87% of
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Statistic ACER random

Success rate 87.06% 2.00%

Amulet recovered rate 96.16% 14.50%

Pathfinding to stairs rate 90.54% 13.79%

Pathfinding to undiscovered stairs rate 94.75% 6.21%

Pathfinding to found stairs rate 86.95% 44.00%

Stairs found before amulet rate 52.10% 17.24%

Avg number of steps to succeed 205 274

Avg number of seen tiles 486 106

Table 3.8: Final results of ACER recovering the amulet from the first level

the times, though even if the learning curves were still in a slowly ascending

trend when we interrupted the training. This discrepancy is probably due

to a new skill required for this endeavor: pathfinding to a known location.

We see from table 3.8 that the agent has discovered the stairs position before

the amulet in ∼ 52% of cases. In this kind of scenario it is able to succeed

∼ 87% of the times after recovering the amulet, while in the opposite case

— when it has yet to uncover the stairs — it is able to win almost 95%

of the games. Regarding its behavior, sometimes it shows some difficulty

in stepping toward the right direction and on some occasions it is not able

to reach the stairs in time. For instance, when the path to the stairs is

significantly longer than as the crow flies (like in figure 3.10), requiring first

to visually get further from them, the agent always attempts many times

to cross the wall before actually going for the correct path. This imperfect

pathfinding is an indication of where to focus the attention in future work

and is a symptom of something defective, either in the algorithms or in the

neural network architecture.

3.5.3 Second level

This experiment is intended to show the limit of our learning configuration

and set the bar for future work. We expected terrible results and were not

surprised in this regard.
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Level: 1  Gold: 0      Hp: 12(12)  Str: 16(16)  Arm: 4   Exp: 1/0  Cmd: 245

Figure 3.10: ACER agent attempting to cross walls to reach the stairs after

having recovered the amulet

Here we set the maximum amount of steps per episode to 1000, that are

more than enough for the task.

Results

Statistic ACER random

Success rate 0.06% 0%

Amulet recovered rate 2.06% 1.00%

First level descent rate 13.34% 12.50%

Second level ascent rate 0.06% 0%

Avg number of steps to succeed 59 –

Avg number of seen tiles 143 137

Table 3.9: Final results of ACER recovering the amulet from the second level

The results are shown in figure 3.11 and table 3.9. It appears that the

agent is not able to learn at all, even though it is sometimes able to recover



3.5 Recovering the amulet from early levels 69

0M 20M 40M 60M 80M 100M

0

0.1

0.2

0.3

Training steps

R
at

es

amulet
success
descend
ascend

0M 20M 40M 60M 80M 100M

0

50

100

150

Training steps

T
il

es
se

en
av

er
ag

e

Figure 3.11: Results of ACER recovering the amulet from the second level

the amulet. This most likely happens when the rogue starts the game in the

room holding the stairs of the first level, and then the amulet is found in the

room the agent finds itself after descending the stairs. This is arguably not

enough to learn to effectively navigate and search the rogue’s surrounding.

The problem is that the probability of quasi randomly recovering the amulet

from the second level is not enough to teach the agent anything useful, in

fact it keeps moving around haphazardly even after 100 million training steps:

not surprisingly it does not perform significantly better than a completely

random agent. This issue is mostly due to the extremely sparse reward, but

may also be affected by the learning algorithm and the n-step length of 60,

which may be too low in this scenario.

This experiment was meant to show that dealing with this task requires

either further tuning of ACER, perhaps by prioritizing experience replay as in

[35], or some form of intrinsic reward to compensate the discouraging sparsity

and guide the exploration of rooms, or both. Regarding intrinsic reward [5]

seems to be particularly promising, as the authors achieved unprecedented

results in Montezuma’s Revenge, an Atari 2600 game well known for its

complexity and reward sparsity. Future work will have to address this issue
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if keeping the reward function as simple and reasonable as possible remains

a priority.



Conclusions

In this work we resolved the problematics encountered by Asperti et al.

[34, 3, 4] and established new boundaries to what has been shown to be

possible in Rogue via RL.

In section 3.3 we immediately addressed the arisen issues — namely the

low descent rate and the troubles backtracking in cul-de-sac scenarios — via

partitioned A3C and cropped view, then dealt with its unsatisfying facets

by employing ACER and the three towers neural network. In both cases

we achieved a 98% performance, while Asperti et al. obtained 23% and a

completely random agent 7%.

In section 3.4 we tested how far our agent could go, setting the objective

to reach the tenth level. The lower stages presented new challenges, i.e. dark

rooms and labyrinths, that made the task harder than we expected. Our

best results, involving a state representation that retain hidden tiles in dark

rooms and 3000 maximum steps per episode, were reaching the tenth level

64.5% of the times and an average of 7.8 levels descended per episode.

Finally in section 3.5 we investigated recovering the amulet from the first

and second level, awarding only victory and looting the jewel. We obtained a

good 87% success rate in the former case, albeit slightly worse than expected

due to pathfinding issues that manifested for the first time in this scenario.

In the second case we had the terrible results we expected: our agent could

not perform significantly better than a completely random policy. This last

experiment mainly serves to prove that the task is indeed as hard as we

thought and sets the bar for future efforts on this front.
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Future work

There is certainly a lot more work yet for future endeavors. Even if all

the issues faced in this work were resolved, the complexity of the game will

surely challenge researchers for many years to come. Here we summarize

some points that can be addressed to directly improve on this work, some

natural extensions and other interesting directions:

• Test the complete state representations of section 3.3.3 more thor-

oughly;

• Experiment different neural network architectures, which may produce

more capable agents with respect to pathfinding and traversing dark

rooms and labyrinths; e.g. have convolutions decrease the input size

with larger strides instead of or in addition to max-pooling;

• Experiment with some form of curriculum training [7]: e.g. separately

training on each level may ascertain whether f5r only speeds up learning

with respect to f5f or if it actually allows to reach otherwise unattain-

able results;

• Experiment with monsters, that will surely introduce further compli-

cations to the tasks; arguably, dealing with them may not be very sig-

nificant unless the agent is also made able to gather and use weapons,

otherwise the best solutions might just be to run away; this however

requires interacting with the inventory, which is definitely one of the

most complicated and difficult elements of the game to learn by RL;

• If reducing the complexity and parameters number of the neural net-

work model becomes a priority, [12] proposes to use a method based on

Vector Quantization and Sparse Coding to encode state representation

and a very small network that focuses exclusively on approximating the

policy rather than also extracting features.



Appendix A

ACER code

In this section we present some code snippets from our ACER implementa-

tion, derived from OpenAI’s baselines [14].

A.1 Main loop

Here we show the main code controlling the program execution flow.

1 def l e a rn ( po l i cy , env , f l a g s ) :

2

3 nenvs = env . num envs

4 ob space = env . ob s e rva t i on space

5 ac space = env . a c t i on spac e

6 model = Model ( po l i c y=pol i cy , ob space=ob space ,

7 ac space=ac space , nenvs=nenvs ,

8 num procs=nenvs , f l a g s=f l a g s )

9

10 runner = Runner ( env=env , model=model ,

11 nsteps=f l a g s . nsteps , nstack=f l a g s . nstack )

12 i f f l a g s . r e p l a y r a t i o > 0 :

13 buffer = Buf fe r ( env=env , nsteps=f l a g s . nsteps ,

14 nstack=f l a g s . nstack , s i z e=f l a g s . b u f f e r s i z e )

15 else :

16 buffer = None

17 nbatch = nenvs∗ f l a g s . nsteps

18 acer = Acer ( runner , model , buffer , f l a g s . l o g i n t e r v a l , f l a g s . s t a t s i n t e r v a l )

19

20 . . . # f u r t h e r b o o t s t r a p p i n g

21

22 acer . t s t a r t = time . time ( )

23 for acer . s t ep s in range ( s t a r t s t e p s , f l a g s . t o t a l t ime s t ep s , nbatch ) :

24

25 # on p o l i c y t r a i n i n g

26 acer . c a l l ( on po l i cy=True )

27

28 # o f f p o l i c y t r a i n i n g

29 i f f l a g s . r e p l a y r a t i o > 0 and buffer . h a s a t l e a s t ( f l a g s . r e p l a y s t a r t ) :
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30 n = np . random . po i s son ( f l a g s . r e p l a y r a t i o )

31 for in range (n ) :

32 acer . c a l l ( on po l i cy=False ) # no s imu l a t i o n s t e p s in t h i s

33

34 . . . # pe r i o d i c save l o g i c

A.2 Environment interaction and training

In the following snippets we show the interaction with environment. First

we display a higher level n-step interaction followed by backpropagation.

1 class Acer ( ) :

2

3 . . .

4

5 def c a l l ( s e l f , on po l i c y ) :

6 runner , model , buffer , s t ep s = s e l f . runner , s e l f . model , s e l f . buffer , s e l f . s t ep s

7 i f on po l i cy :

8 enc obs , obs , act ions , rewards , mus , dones , masks = runner . run ( )

9 s e l f . e p i s o d e s t a t s . f e ed ( rewards , dones )

10 i f buffer i s not None :

11 buffer . put ( enc obs , act ions , rewards , mus , dones , masks )

12 else :

13 # ge t obs , a c t i on s , rewards , mus , dones from b u f f e r .

14 obs , act ions , rewards , mus , dones , masks = buffer . get ( )

15

16 . . . # re shap in g

17

18 # here model . i n i t a l s t a t e e q u a l s to :

19 # np . z e r o s ( ( nenv , l s tm u n i t s ∗2))

20 names ops , va lue s ops = model . t r a i n ( obs , act ions , rewards , dones ,

21 mus , model . i n i t i a l s t a t e , masks , s t ep s )

22

23 . . . # s t a t s

Second we show the step-by-step environment interaction code, where we

take care to preserve the temporal sequence of steps in order to correctly

perform backpropagation later.

1 class Runner ( object ) :

2

3 . . .

4

5 def run ( s e l f ) :

6 # s e l f . obs r e f e r s to t h e l a s t environment o b s e r v a t i o n s

7 # s t o r e d in e a r l i e r c a l l s

8 enc obs = np . s p l i t ( s e l f . obs , s e l f . nstack , ax i s=3) # l i s t o f obs s t e p s

9 mb obs , mb actions , mb mus , mb dones , mb rewards = [ ] , [ ] , [ ] , [ ] , [ ]

10 for in range ( s e l f . ns teps ) :

11 act ions , mus , s t a t e s = s e l f . model . s tep ( s e l f . obs , s t a t e=s e l f . s t a t e s ,

12 mask=s e l f . dones )

13 mb obs . append (np . copy ( s e l f . obs ) )

14 mb actions . append ( a c t i on s )

15 mb mus . append (mus)

16 mb dones . append ( s e l f . dones )

17 obs , rewards , dones , = s e l f . env . s tep ( a c t i on s )
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18 # s t a t e s in f o rma t i on f o r s t a t e f u l l models l i k e LSTM

19 s e l f . s t a t e s = s t a t e s

20 s e l f . dones = dones

21 s e l f . update obs ( obs , dones )

22 mb rewards . append ( rewards )

23 enc obs . append ( obs )

24 mb obs . append (np . copy ( s e l f . obs ) )

25 mb dones . append ( s e l f . dones )

26

27 enc obs = np . asarray ( enc obs , dtype=np . u int8 ) . swapaxes (1 , 0)

28 mb obs = np . asarray (mb obs , dtype=np . u int8 ) . swapaxes (1 , 0)

29 mb actions = np . asarray ( mb actions , dtype=np . in t32 ) . swapaxes (1 , 0)

30 mb rewards = np . asarray (mb rewards , dtype=np . f l o a t 3 2 ) . swapaxes (1 , 0)

31 mb mus = np . asarray (mb mus , dtype=np . f l o a t 3 2 ) . swapaxes (1 , 0)

32

33 mb dones = np . asarray (mb dones , dtype=np . bool ) . swapaxes (1 , 0)

34

35 # Used f o r s t a t e f u l l models l i k e LSTM’ s to mask s t a t e when done

36 mb masks = mb dones

37 # Used f o r c a l c u l a t i n g r e t u rn s . The dones array i s now a l i g n e d wi th rewards

38 mb dones = mb dones [ : , 1 : ]

39

40 # shapes are now [ nenv , ns t eps , [ ] ]

41

42 return enc obs , mb obs , mb actions , mb rewards , mb mus , mb dones , mb masks

43

44 def update obs ( s e l f , obs , dones=None ) :

45 i f dones i s not None :

46 s e l f . obs ∗= (1 − dones . astype (np . u int8 ) ) [ : , None , None , None ]

47 s e l f . obs = np . r o l l ( s e l f . obs , s h i f t=−s e l f . nc , ax i s=3)

48 s e l f . obs [ : , : , : , − s e l f . nc : ] = obs [ : , : , : , : ]
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Appendix B

Three towers analysis

Here we discuss some interesting aspects of the main neural network ar-

chitecture we employed: the three towers model in figure 3.3. In particular,

we were curious of where the network focuses its attention, i.e. the location

on the map where the max-pooling layers extract the maximum values from

the last convolution of each tower. It should be noted however that when

the maximum value is extracted all information on its position on the map is

lost, unless the rogue is inside the receptive field centered on it. In this case

a neuron could specialize in detecting the player character in specific coordi-

nates of the field and some other feature. In the opposite circumstance the

agent may be aware of the presence of significant entities, but not of their

precise location. We call the towers, from left to right of the figure, global

vision tower (GVT), local vision tower 1 (LVT1) and local vision tower 2

(LVT2).

We found that GVT generally produces the highest outputs very close to

the location of the rogue and of the stairs when they are visible, and often on

interesting (sometimes distant) spots such as unexplored doors. The values

close to the rogue usually give an idea of where the agent will step next. For

unknown reasons some channels also seem to output high values near the

corners and sometimes in a vertical line on a side of the map.

On the other hand, we realized that many of the LVTs channels produce
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entirely single-valued output, e.g. all zeros. This phenomenon involves a

number of channels inversely proportional to the amount of map explored

and we are unsure of its significance. In figure B.1, to avoid noise, we have

decided to show only the locations extracted from non single-valued channels.

Of these, some had more than one position with the highest value.

The areas marked by LVT1 are the most difficult to explain. They are

generally locations where the agent has previously been, such as corridor

corners that have just been turned, or uninteresting spots like room corners

without doors and points close to them in unreachable sections of the map.

This interpretation is not entirely consistent though, since LVT1 also some-

times highlights the location where presumably a room will be discovered in

the immediate future.

Finally, we found LVT2 to be similar to GVT, albeit on a larger scale

in both space and time. This tower produces the highest outputs on areas

toward which the agent is currently directed and on far, unexplored territories

that could be interesting in the future. Again, however, when the maximum is

extracted from the convolutions output the information on its location is lost

— unless the rogue is inside the receptive field — and only the knowledge

of its presence is preserved: it is unclear how the network can use it so

effectively.

In figure B.1 we can observe all the aspects we mentioned and note that

no tower is free from noisy output, highlighting parts of the map that are

not easily interpretable, such as the corners of the map. All in all, the most

reasonable insight we gain from this analysis is that the neural network has

redundant parameters and it could conceivably be reduced in size without

a significant impact on its performance. Perhaps entirely removing tower

LVT1, and possibly LVT2, or maybe altering the global max-pooling layers

such that their output has shape 3 × 3 × C instead of 1 × 1 × C in order

to retain some information on the position of features, would prove to be

interesting experiments: we leave them for future work.
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(a)

(b)

Figure B.1: Three towers focus; in red we show GVT, in green LVT1 and in

blue LVT2; we use lighter colors for coordinates that had the highest value

in multiple channels of the same tower
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