Berti, Elisa
 
(2015)
Applicazione del metodo QDanet_PRO alla classificazione di dati omici.
[Laurea], Università di Bologna, Corso di Studio in 
Fisica [L-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      Il presente lavoro di tesi si pone nell'ambito dell'analisi dati attraverso un metodo (QDanet_PRO), elaborato dal Prof. Remondini in collaborazine coi Dott. Levi e Malagoli, basato sull'analisi discriminate a coppie e sulla Teoria dei Network, che ha come obiettivo la classificazione di dati contenuti in dataset dove il numero di campioni è molto ridotto rispetto al numero di variabili.
Attraverso questo studio si vogliono identificare delle signature, ovvero un'insieme ridotto di variabili che siano in grado di classificare correttamente i campioni in base al comportamento delle variabili stesse.
L'elaborazione dei diversi dataset avviene attraverso diverse fasi; si comincia con una un'analisi discriminante a coppie per identificare le performance di ogni coppia di variabili per poi passare alla ricerca delle coppie più performanti attraverso un processo che combina la Teoria dei Network con la Cross Validation. Una volta ottenuta la signature si conclude l'elaborazione con una validazione per avere un'analisi quantitativa del successo o meno del metodo.
     
    
      Abstract
      Il presente lavoro di tesi si pone nell'ambito dell'analisi dati attraverso un metodo (QDanet_PRO), elaborato dal Prof. Remondini in collaborazine coi Dott. Levi e Malagoli, basato sull'analisi discriminate a coppie e sulla Teoria dei Network, che ha come obiettivo la classificazione di dati contenuti in dataset dove il numero di campioni è molto ridotto rispetto al numero di variabili.
Attraverso questo studio si vogliono identificare delle signature, ovvero un'insieme ridotto di variabili che siano in grado di classificare correttamente i campioni in base al comportamento delle variabili stesse.
L'elaborazione dei diversi dataset avviene attraverso diverse fasi; si comincia con una un'analisi discriminante a coppie per identificare le performance di ogni coppia di variabili per poi passare alla ricerca delle coppie più performanti attraverso un processo che combina la Teoria dei Network con la Cross Validation. Una volta ottenuta la signature si conclude l'elaborazione con una validazione per avere un'analisi quantitativa del successo o meno del metodo.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea)
      
      
      
      
        
      
        
          Autore della tesi
          Berti, Elisa
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Analisi Discriminante, Teoria dei Network, Cross-Validation, Validazione.
          
        
      
        
          Data di discussione della Tesi
          30 Ottobre 2015
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Berti, Elisa
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Analisi Discriminante, Teoria dei Network, Cross-Validation, Validazione.
          
        
      
        
          Data di discussione della Tesi
          30 Ottobre 2015
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: