Mancini, Martina
 
(2015)
Teorema di Cochran e applicazioni.
[Laurea], Università di Bologna, Corso di Studio in 
Matematica [L-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      La statistica è un ramo della matematica che studia i metodi per raccogliere, organizzare e analizzare un insieme di dati numerici, la cui variazione è influenzata da  cause diverse, con lo scopo sia di descrivere le caratteristiche del fenomeno a cui i dati si riferiscono, sia di dedurre, ove possibile, le leggi generali che lo regolano. La statistica si suddivide in statistica descrittiva o deduttiva e in statistica induttiva o inferenza statistica. Noi ci occuperemo di approfondire la seconda, nella quale si studiano le condizioni per cui le conclusioni dedotte dall'analisi statistica di un campione sono valide in casi più generali. In particolare l'inferenza statistica si pone   l'obiettivo di indurre o inferire le proprietà di una popolazione (parametri) sulla base dei dati conosciuti relativi ad un campione. Lo scopo principale di questa tesi è analizzare il Teorema di Cochran e illustrarne le possibili applicazioni nei problemi di stima in un campione Gaussiano. In particolare il Teorema di Cochran riguarda   un'importante proprietà delle distribuzioni normali multivariate, che risulta fondamentale nella determinazione di intervalli di fiducia per i parametri incogniti.
     
    
      Abstract
      La statistica è un ramo della matematica che studia i metodi per raccogliere, organizzare e analizzare un insieme di dati numerici, la cui variazione è influenzata da  cause diverse, con lo scopo sia di descrivere le caratteristiche del fenomeno a cui i dati si riferiscono, sia di dedurre, ove possibile, le leggi generali che lo regolano. La statistica si suddivide in statistica descrittiva o deduttiva e in statistica induttiva o inferenza statistica. Noi ci occuperemo di approfondire la seconda, nella quale si studiano le condizioni per cui le conclusioni dedotte dall'analisi statistica di un campione sono valide in casi più generali. In particolare l'inferenza statistica si pone   l'obiettivo di indurre o inferire le proprietà di una popolazione (parametri) sulla base dei dati conosciuti relativi ad un campione. Lo scopo principale di questa tesi è analizzare il Teorema di Cochran e illustrarne le possibili applicazioni nei problemi di stima in un campione Gaussiano. In particolare il Teorema di Cochran riguarda   un'importante proprietà delle distribuzioni normali multivariate, che risulta fondamentale nella determinazione di intervalli di fiducia per i parametri incogniti.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea)
      
      
      
      
        
      
        
          Autore della tesi
          Mancini, Martina
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Cochran regressione lineare stima inferenza statistica
          
        
      
        
          Data di discussione della Tesi
          25 Settembre 2015
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Mancini, Martina
          
        
      
        
          Relatore della tesi
          
          
        
      
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Cochran regressione lineare stima inferenza statistica
          
        
      
        
          Data di discussione della Tesi
          25 Settembre 2015
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        