Prediction and measurement of forced response of a composite blade undergoing nonlinear vibration

Piraccini, Matteo (2015) Prediction and measurement of forced response of a composite blade undergoing nonlinear vibration. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria meccanica [LM-DM270] - Forli', Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Piraccini_Matteo_tesi.pdf] Documento PDF
Full-text non accessibile

Download (5MB) | Contatta l'autore

Abstract

The main objective of this project is to experimentally demonstrate geometrical nonlinear phenomena due to large displacements during resonant vibration of composite materials and to explain the problem associated with fatigue prediction at resonant conditions. Three different composite blades to be tested were designed and manufactured, being their difference in the composite layup (i.e. unidirectional, cross-ply, and angle-ply layups). Manual envelope bagging technique is explained as applied to the actual manufacturing of the components; problems encountered and their solutions are detailed. Forced response tests of the first flexural, first torsional, and second flexural modes were performed by means of a uniquely contactless excitation system which induced vibration by using a pulsed airflow. Vibration intensity was acquired by means of Polytec LDV system. The first flexural mode is found to be completely linear irrespective of the vibration amplitude. The first torsional mode exhibits a general nonlinear softening behaviour which is interestingly coupled with a hardening behaviour for the unidirectional layup. The second flexural mode has a hardening nonlinear behaviour for either the unidirectional and angle-ply blade, whereas it is slightly softening for the cross-ply layup. By using the same equipment as that used for forced response analyses, free decay tests were performed at different airflow intensities. Discrete Fourier Trasform over the entire decay and Sliding DFT were computed so as to visualise the presence of nonlinear superharmonics in the decay signal and when they were damped out from the vibration over the decay time. Linear modes exhibit an exponential decay, while nonlinearities are associated with a dry-friction damping phenomenon which tends to increase with increasing amplitude. Damping ratio is derived from logarithmic decrement for the exponential branch of the decay.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Piraccini, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Nonlinear vibration dynamics composite
Data di discussione della Tesi
19 Marzo 2015
URI

Altri metadati

Gestione del documento: Visualizza il documento

^