Hydraulic evaluation of the gyro electric wave energy converter

Guaraldi, Irene (2015) Hydraulic evaluation of the gyro electric wave energy converter. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria per l'ambiente e il territorio [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Guaraldi_Irene_tesi.pdf] Documento PDF
Full-text non accessibile

Download (41MB) | Contatta l'autore

Abstract

Motivation Thanks for a scholarship offered by ALma Mater Studiorum I could stay in Denmark for six months during which I could do physical tests on the device Gyro PTO at the Departmet of Civil Engineering of Aalborg University. Aim The goal of my thesis is an hydraulic evaluation of the device: Gyro PTO, a gyroscopic device for conversion of mechanical energy in ocean surface waves to electrical energy. The principle of the system is the application of the gyroscopic moment of flywheels equipped on a swing float excited by waves. The laboratory activities were carried out by: Morten Kramer, Jan Olsen, Irene Guaraldi, Morten Thøtt, Nikolaj Holk. The main purpose of the tests was to investigate the power absorption performance in irregular waves, but testing also included performance measures in regular waves and simple tests to get knowledge about characteristics of the device, which could facilitate the possibility of performing numerical simulations and optimizations. Methodology To generate the waves and measure the performance of the device a workstation was created in the laboratory. The workstation consist of four computers in each of wich there was a different program. Programs have been used : Awasys6, LabView, Wave lab, Motive optitrack, Matlab, Autocad Main Results Thanks to the obtained data with the tank testing was possible to make the process of wave analisys. We obtained significant wave height and period through a script Matlab and then the values of power produced, and energy efficiency of the device for two types of waves: regular and irregular. We also got results as: physical size, weight, inertia moments, hydrostatics, eigen periods, mooring stiffness, friction, hydrodynamic coefficients etc. We obtained significant parameters related to the prototype in the laboratory after which we scale up the results obtained for two future applications: one in Nissun Brending and in the North Sea. Conclusions The main conclusion on the testing is that more focus should be put into ensuring a stable and positive power output in a variety of wave conditions. In the irregular waves the power production was negative and therefore it does not make sense to scale up the results directly. The average measured capture width in the regular waves was 0.21 m. As the device width is 0.63 m this corresponds to a capture width ratio of: 0.21/0.63 * 100 = 33 %. Let’s assume that it is possible to get the device to produce as well in irregular waves under any wave conditions, and lets further assume that the yearly absorbed energy can be converted into electricity at a PTO-efficiency of 90 %. Under all those assumptions the results in table are found, i.e. a Nissum Bredning would produce 0.87 MWh/year and a North Sea device 85 MWh/year.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Guaraldi, Irene
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Ingegneria per l'ambiente e il territorio
Ordinamento Cds
DM270
Parole chiave
Gyro PTO: a new Wave Energy Converter
Data di discussione della Tesi
18 Marzo 2015
URI

Altri metadati

Gestione del documento: Visualizza il documento

^