Optimisation of chemical lysis protocol for point-of-care leukocyte differentiation

La Gioia, Alessandra (2014) Optimisation of chemical lysis protocol for point-of-care leukocyte differentiation. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria biomedica [LM-DM270] - Cesena
Documenti full-text disponibili:
[thumbnail of LaGioia_Alessandra_tesi.pdf]
Anteprima
Documento PDF
Download (8MB) | Anteprima

Abstract

The full blood cell (FBC) count is the most common indicator of diseases. At present hematology analyzers are used for the blood cell characterization, but, recently, there has been interest in using techniques that take advantage of microscale devices and intrinsic properties of cells for increased automation and decreased cost. Microfluidic technologies offer solutions to handling and processing small volumes of blood (2-50 uL taken by finger prick) for point-of-care(PoC) applications. Several PoC blood analyzers are in use and may have applications in the fields of telemedicine, out patient monitoring and medical care in resource limited settings. They have the advantage to be easy to move and much cheaper than traditional analyzers, which require bulky instruments and consume large amount of reagents. The development of miniaturized point-of-care diagnostic tests may be enabled by chip-based technologies for cell separation and sorting. Many current diagnostic tests depend on fractionated blood components: plasma, red blood cells (RBCs), white blood cells (WBCs), and platelets. Specifically, white blood cell differentiation and counting provide valuable information for diagnostic purposes. For example, a low number of WBCs, called leukopenia, may be an indicator of bone marrow deficiency or failure, collagen- vascular diseases, disease of the liver or spleen. The leukocytosis, a high number of WBCs, may be due to anemia, infectious diseases, leukemia or tissue damage. In the laboratory of hybrid biodevices, at the University of Southampton,it was developed a functioning micro impedance cytometer technology for WBC differentiation and counting. It is capable to classify cells and particles on the base of their dielectric properties, in addition to their size, without the need of labeling, in a flow format similar to that of a traditional flow cytometer. It was demonstrated that the micro impedance cytometer system can detect and differentiate monocytes, neutrophils and lymphocytes, which are the three major human leukocyte populations. The simplicity and portability of the microfluidic impedance chip offer a range of potential applications in cell analysis including point-of-care diagnostic systems. The microfluidic device has been integrated into a sample preparation cartridge that semi-automatically performs erythrocyte lysis before leukocyte analysis. Generally erythrocytes are manually lysed according to a specific chemical lysis protocol, but this process has been automated in the cartridge. In this research work the chemical lysis protocol, defined in the patent US 5155044 A, was optimized in order to improve white blood cell differentiation and count performed by the integrated cartridge.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
La Gioia, Alessandra
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Impedance cytometry
Data di discussione della Tesi
17 Luglio 2014
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^