Extracting evolutionary information from the spectral decomposition of early-type galaxies.

Citro, Annalisa (2014) Extracting evolutionary information from the spectral decomposition of early-type galaxies. [Laurea magistrale], Università di Bologna, Corso di Studio in Astrofisica e cosmologia [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Citro_Annalisa_tesi.pdf] Documento PDF
Full-text non accessibile

Download (11MB) | Contatta l'autore

Abstract

Holding the major share of stellar mass in galaxies and being also old and passively evolving, early-type galaxies (ETGs) are the primary probes in investigating these various evolution scenarios, as well as being useful means to provide insights on cosmological parameters. In this thesis work I focused specifically on ETGs and on their capability in constraining galaxy formation and evolution; in particular, the principal aims were to derive some of the ETGs evolutionary parameters, such as age, metallicity and star formation history (SFH) and to study their age-redshift and mass-age relations. In order to infer galaxy physical parameters, I used the public code STARLIGHT: this program provides a best fit to the observed spectrum from a combination of many theoretical models defined in user-made libraries. the comparison between the output and input light-weighted ages shows a good agreement starting from SNRs of ∼ 10, with a bias of ∼ 2.2% and a dispersion 3%. Furthermore, also metallicities and SFHs are well reproduced. In the second part of the thesis I performed an analysis on real data, starting from Sloan Digital Sky Survey (SDSS) spectra. I found that galaxies get older with cosmic time and with increasing mass (for a fixed redshift bin); absolute light-weighted ages, instead, result independent from the fitting parameters or the synthetic models used. Metallicities, instead, are very similar from each other and clearly consistent with the ones derived from the Lick indices. The predicted SFH indicates the presence of a double burst of star formation. Velocity dispersions and extinctiona are also well constrained, following the expected behaviours. As a further step, I also fitted single SDSS spectra (with SNR∼ 20), to verify that stacked spectra gave the same results without introducing any bias: this is an important check, if one wants to apply the method at higher z, where stacked spectra are necessary to increase the SNR. Our upcoming aim is to adopt this approach also on galaxy spectra obtained from higher redshift Surveys, such as BOSS (z ∼ 0.5), zCOSMOS (z 1), K20 (z ∼ 1), GMASS (z ∼ 1.5) and, eventually, Euclid (z 2). Indeed, I am currently carrying on a preliminary study to estabilish the applicability of the method to lower resolution, as well as higher redshift (z 2) spectra, just like the Euclid ones.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Citro, Annalisa
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
galaxy formation and evolution early-type galaxies spectral fitting synthesis population modelling
Data di discussione della Tesi
18 Luglio 2014
URI

Altri metadati

Gestione del documento: Visualizza il documento

^