Documenti full-text disponibili:
Abstract
L’Exploratory Search, paradigma di ricerca basato sulle attività di scoperta e d’apprendimento, è stato per diverso tempo ignorato dai motori di ricerca tradizionali. Invece, è spesso dalle ricerche esplorative che nascono le idee più innovative. Le recenti tecnologie del Semantic Web forniscono le soluzioni che permettono d’implementare dei motori di ricerca capaci di accompagnare gli utenti impegnati in tale tipo di ricerca. Aemoo, motore di ricerca sul quale s’appoggia questa tesi ne è un esempio efficace. A partire da quest’ultimo e sempre con l’aiuto delle tecnologie del Web of Data, questo lavoro si propone di fornire una metodologia che permette di prendere in considerazione la singolarità del profilo di ciascun utente al fine di guidarlo nella sua ricerca esplorativa in modo personalizzato. Il criterio di personalizzazione che abbiamo scelto è comportamentale, ovvero basato sulle decisioni che l’utente prende ad ogni tappa che ritma il processo di ricerca. Implementando un prototipo, abbiamo potuto testare la validità di quest’approccio permettendo quindi all’utente di non essere più solo nel lungo e tortuoso cammino che porta alla conoscenza.
Abstract
L’Exploratory Search, paradigma di ricerca basato sulle attività di scoperta e d’apprendimento, è stato per diverso tempo ignorato dai motori di ricerca tradizionali. Invece, è spesso dalle ricerche esplorative che nascono le idee più innovative. Le recenti tecnologie del Semantic Web forniscono le soluzioni che permettono d’implementare dei motori di ricerca capaci di accompagnare gli utenti impegnati in tale tipo di ricerca. Aemoo, motore di ricerca sul quale s’appoggia questa tesi ne è un esempio efficace. A partire da quest’ultimo e sempre con l’aiuto delle tecnologie del Web of Data, questo lavoro si propone di fornire una metodologia che permette di prendere in considerazione la singolarità del profilo di ciascun utente al fine di guidarlo nella sua ricerca esplorativa in modo personalizzato. Il criterio di personalizzazione che abbiamo scelto è comportamentale, ovvero basato sulle decisioni che l’utente prende ad ogni tappa che ritma il processo di ricerca. Implementando un prototipo, abbiamo potuto testare la validità di quest’approccio permettendo quindi all’utente di non essere più solo nel lungo e tortuoso cammino che porta alla conoscenza.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Dos, Caroline
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Semantic Web, Exploratory Search, Recommendation Systems
Data di discussione della Tesi
18 Luglio 2013
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(Tesi di laurea triennale)
Autore della tesi
Dos, Caroline
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Semantic Web, Exploratory Search, Recommendation Systems
Data di discussione della Tesi
18 Luglio 2013
URI
Statistica sui download
Gestione del documento: