sinr map reconstruction in urban wireless networks using group equivariant non-expansive operators (GENEO)

Taj Bakhsh, Payam (2026) sinr map reconstruction in urban wireless networks using group equivariant non-expansive operators (GENEO). [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria elettronica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

High-resolution Signal-to-Interference-Noise Ratio (SINR) maps are a key enabler for radio environment mapping, coverage planning, and intelligent resource allocation in next-generation (6G-oriented) urban wireless networks, but dense measurement acquisition is often impractical. This thesis investigates SINR map reconstruction from extremely sparse and irregular samples (1–3%) using Group Equivariant Non-Expansive Operators (GENEOs), a parameter-efficient operator-learning framework that embeds geometric symmetries (notably rotation equivariance) and stability (non-expansiveness) directly into the reconstruction model. The proposed GENEO-based methodology combines rotation-equivariant kernel operators with similarity-based weighting to propagate sparse measurements over a 2-D urban grid while preserving structural regularities of radio propagation. The approach is validated on realistic ray-traced urban datasets (Munich and Paris) and benchmarked against classical interpolators (IDW, RBF), a statistical baseline (Gaussian Process Regression), and a deep learning baseline (U-Net), using pixel-wise metrics (RMSE, SSIM) and topological fidelity measures (e.g., persistence-diagram distances). At 2% sampling, GENEO achieves RMSE 3.42 ± 0.18 dB (vs. IDW 4.87 ± 0.24 dB and RBF 4.23 ± 0.21 dB), remaining functional down to 1% sampling with RMSE 4.52 ± 0.28 dB; U-Net yields the best accuracy (2.94 ± 0.16 dB) but with ~2M parameters, while GENEO uses ~100 parameters and substantially lower memory footprint. Cross-city transfer (Munich→Paris) shows moderate degradation (RMSE 4.15 ± 0.24 dB vs. 3.28 ± 0.17 dB within-city), indicating useful generalization without target-city retraining. Overall, GENEOs offer a mathematically grounded and computationally efficient alternative for SINR reconstruction in data-scarce settings, balancing accuracy, robustness, and interpretability.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Taj Bakhsh, Payam
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ELECTRONICS FOR INTELLIGENT SYSTEMS, BIG-DATA AND INTERNET OF THINGS
Ordinamento Cds
DM270
Parole chiave
SINR map reconstruction, radio environment mapping (REM), 6G urban wireless networks, sparse and irregular sampling, operator learning, Group Equivariant Non-Expansive Operators (GENEOs), rotation equivariance, non-expansiveness (stability), kernel operators, ray-tracing datasets, Gaussian Process Regression (GPR), U-Net, topological data analysis (TDA), persistence diagrams, cross-city transfer learning
Data di discussione della Tesi
5 Febbraio 2026
URI

Altri metadati

Gestione del documento: Visualizza il documento

^