Buffoni, Andrea
(2025)
On the Harmonic Characterization of Euclidean Balls and Spheres.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (895kB)
| Contatta l'autore
|
Abstract
Harmonic functions, i.e. the solutions of the Laplace equation, satisfy a solid and a surface mean value property. Indeed, given an open set and a harmonic function on this set, then for every Euclidean ball with closure contained in the set, the value of the function at the center of the ball coincides with the surface average integral of the function over the boundary of the ball and with the volume average integral of the function over the ball.
In this work we want to study the rigidity properties of these mean value properties.
In the first chapter, we prove mean value properties for harmonic functions and we also prove that these properties characterize harmonicity.
In the second chapter, we study the rigidity of the solid mean value property. Indeed, Kuran has proved that if D is an open set such that all the harmonic and summable functions on D satisfy the solid mean value property, then D is an Euclidean ball.
Then, in the third chapter, we study the much more complicate problem of the rigidity of the surface mean value property. Indeed, we define harmonic pseudosphere an open and bounded set such that the surface mean value property holds for every function harmonic on the set and continuous up to the boundary. In general, harmonic pseudospheres are not Euclidean spheres. However, this becomes true if we require some regularity on the set. In particular, we introduce a spherical index and we use it to get a harmonic characterization of Euclidean spheres, which requires only local assumptions. In particular, we obtain results that apply to a large class of sets, since to define the spherical index we do not need any regularity assumption.
Finally, we study the rigidity of the equality between solid and surface mean value property, proving a rigidity theorem by Fichera.
Abstract
Harmonic functions, i.e. the solutions of the Laplace equation, satisfy a solid and a surface mean value property. Indeed, given an open set and a harmonic function on this set, then for every Euclidean ball with closure contained in the set, the value of the function at the center of the ball coincides with the surface average integral of the function over the boundary of the ball and with the volume average integral of the function over the ball.
In this work we want to study the rigidity properties of these mean value properties.
In the first chapter, we prove mean value properties for harmonic functions and we also prove that these properties characterize harmonicity.
In the second chapter, we study the rigidity of the solid mean value property. Indeed, Kuran has proved that if D is an open set such that all the harmonic and summable functions on D satisfy the solid mean value property, then D is an Euclidean ball.
Then, in the third chapter, we study the much more complicate problem of the rigidity of the surface mean value property. Indeed, we define harmonic pseudosphere an open and bounded set such that the surface mean value property holds for every function harmonic on the set and continuous up to the boundary. In general, harmonic pseudospheres are not Euclidean spheres. However, this becomes true if we require some regularity on the set. In particular, we introduce a spherical index and we use it to get a harmonic characterization of Euclidean spheres, which requires only local assumptions. In particular, we obtain results that apply to a large class of sets, since to define the spherical index we do not need any regularity assumption.
Finally, we study the rigidity of the equality between solid and surface mean value property, proving a rigidity theorem by Fichera.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Buffoni, Andrea
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
harmonic functions,mean value properties,rigidity of mean value properties,harmonic pseudosphere,harmonic characterization,spherical index,Kuran gap,single layer potentials,Fichera theorem
Data di discussione della Tesi
19 Dicembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Buffoni, Andrea
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
harmonic functions,mean value properties,rigidity of mean value properties,harmonic pseudosphere,harmonic characterization,spherical index,Kuran gap,single layer potentials,Fichera theorem
Data di discussione della Tesi
19 Dicembre 2025
URI
Statistica sui download
Gestione del documento: