Quantum circuit evolution with free fermions in disguise

Cristani, Daniele (2025) Quantum circuit evolution with free fermions in disguise. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 4.0 (CC BY-NC-ND 4.0)

Download (1MB)

Abstract

The applications of free fermions in statistical physics and quantum computation have long been well established. In particular, the Jordan–Wigner (JW) transformation can map certain spin-$1/2$ chains to free fermionic systems, revealing their complete solvability. On the other hand, free fermionic systems are also classically simulable and therefore provide useful benchmarks for experimental implementations of quantum computers. Recently, Free Fermions in Disguise (FFD) have been introduced: these are new spin-$1/2$ chain models that can be mapped to free fermions, but not through the standard Jordan–Wigner transformation. In this thesis, we address the problem of constructing quantum circuits from Free Fermions in Disguise. This is challenging because not all circuits built from these models remain free fermionic, in contrast to the JW-diagonalizable case. We present a systematic approach to demonstrate that some circuits previously proposed in the literature are indeed free fermionic. We then study the circuit dynamics of certain observables expressible in terms of fermionic operators for small system sizes, performing an exact-diagonalization check comparing the spin and fermionic evolutions. These results raise new questions about the classical simulability of free fermions in disguise, which appears to be a more subtle issue than in standard JW-diagonalizable models.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Cristani, Daniele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
Statistical Physics,Quantum Computation,Quantum Information Theory,Free Fermions in Disguise,Free Fermions,Quantum Simulation
Data di discussione della Tesi
19 Dicembre 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^