Snider, Giovanni Maria
(2025)
La quantizzazione del monopolo di Dirac: un approccio geometrico.
[Laurea], Università di Bologna, Corso di Studio in
Fisica [L-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
This thesis presents an introduction to the geometric foundations of classical gauge theories. Starting from the theory of differentiable manifolds and their tangent and cotangent structures, the necessary tools are progressively constructed: vector bundles for describing fields on curved spaces, the calculus of differential forms, which find a natural application in the geometric reformulation of Maxwell's equations, and the theory of Lie groups and Lie algebras for the description of continuous symmetries. These tools converge in the study of connections on principal bundles, where the Hopf fibration provides the natural setting to construct the Dirac magnetic monopole and derive its charge quantization condition as a consequence of the non trivial topology of the bundle. The treatment shows how differential geometry provides not merely a convenient language for physics, but a framework in which deep physical constraints emerge from purely mathematical structures.
Abstract
This thesis presents an introduction to the geometric foundations of classical gauge theories. Starting from the theory of differentiable manifolds and their tangent and cotangent structures, the necessary tools are progressively constructed: vector bundles for describing fields on curved spaces, the calculus of differential forms, which find a natural application in the geometric reformulation of Maxwell's equations, and the theory of Lie groups and Lie algebras for the description of continuous symmetries. These tools converge in the study of connections on principal bundles, where the Hopf fibration provides the natural setting to construct the Dirac magnetic monopole and derive its charge quantization condition as a consequence of the non trivial topology of the bundle. The treatment shows how differential geometry provides not merely a convenient language for physics, but a framework in which deep physical constraints emerge from purely mathematical structures.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Snider, Giovanni Maria
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Differential geometry,Dirac monopole,Classic gauge theory,Bundles
Data di discussione della Tesi
12 Dicembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Snider, Giovanni Maria
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Differential geometry,Dirac monopole,Classic gauge theory,Bundles
Data di discussione della Tesi
12 Dicembre 2025
URI
Gestione del documento: