AI solutions for Visual Recognition of Thyroid Eye Disease

Babboni, Luca (2025) AI solutions for Visual Recognition of Thyroid Eye Disease. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text non accessibile fino al 7 Ottobre 2027.
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (1MB) | Contatta l'autore

Abstract

Thyroid Eye Disease (TED) is a debilitating autoimmune condition with clear visual signs, where diagnostic delays often prevent timely treatment during the critical inflammatory phase. This thesis addresses the need for earlier, more accessible screening by developing and evaluating artificial intelligence methodologies for detecting TED signs from facial photographs. A foundational contribution to this effort is the creation of a novel, expert-annotated ophthalmic dataset, developed with a medical specialist via a robust, privacy-preserving pipeline to overcome the scarcity of public data. However, the dataset's limited size (507 images) and severe class imbalance pose a significant challenge, motivating a systematic benchmark of AI strategies to find a reliable classification method in a data-scarce environment. The study evaluated three distinct approaches, assessing the zero-shot performance of Multimodal Large Language Models (MedGemma, Gemma, Qwen-VL) using four different prompting strategies, examining the specialized medical model MedSigLip both zero-shot and through data-efficient fine-tuning of a classification head on its features, and fully fine-tuning a ResNet-18 architecture to establish a baseline. The results revealed a clear performance hierarchy where fine-tuned methods significantly surpassed zero-shot approaches. The fully fine-tuned ResNet-18 delivered the best overall performance across all clinical signs. While fine-tuning MedSigLip's features also produced strong results, the zero-shot capabilities of all models proved too inconsistent and unreliable for this specialized medical application.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Babboni, Luca
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Thyroid Eye Disease, Artificial Intelligence, Deep Learning, Medical Image Analysis, Multimodal Large Language Models, Zero-Shot Classification
Data di discussione della Tesi
7 Ottobre 2025
URI

Altri metadati

Gestione del documento: Visualizza il documento

^