Use of Generative AI to Support Structured Radiological Reporting in Cardiac Magnetic Resonance Imaging

Pieri, Nicolò (2025) Use of Generative AI to Support Structured Radiological Reporting in Cardiac Magnetic Resonance Imaging. [Laurea magistrale], Università di Bologna, Corso di Studio in Biomedical engineering [LM-DM270] - Cesena, Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (5MB) | Contatta l'autore

Abstract

Free-text reporting is still widely used in radiology, but it often suffers from a lack of completeness, standardization, and comparability, making automation and integration with hospital systems difficult. Structured reporting, on the other hand, provides a standardized framework that improves clarity, consistency, and clinical communication. This thesis presents the design and development of 2GEN4MED, a full-stack web application that allows freelance radiologists to manage clinical appointments and generate structured reports for cardiovascular magnetic resonance (CMR) studies. The system integrates a locally deployed generative AI model to automatically produce reports by combining multiple data sources: user-provided inputs, information extracted from DICOM files, and parameters derived from published reference studies. The resulting reports are standardized according to SCMR guidelines, ensuring that essential clinical information is included in a clear and consistent format. This approach reduces variability, minimizes manual work, and improves workflow efficiency for radiologists. The project demonstrates that the integration of structured reporting and generative AI within a web-based platform can support radiologists in their daily practice, enhancing both the quality of reporting and the usability of clinical data. Future developments could include integration with hospital information systems, role-based access, multilingual support, and the adoption of larger AI models to further improve accuracy and interoperability

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Pieri, Nicolò
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INNOVATIVE TECHNOLOGIES IN DIAGNOSTICS AND THERAPY
Ordinamento Cds
DM270
Parole chiave
Structuredr,Reporting,Cardiac,Magnetic,Resonance,Generative, Artificial,Intelligence,Web,Application,Full-stack, Development,RESTful,API
Data di discussione della Tesi
26 Settembre 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^