Merà, Martina
(2025)
Harmonic maps and their geometric structure: applications to quantum mechanics, general relativity, and Yang-Mills theory.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
| Contatta l'autore
|
Abstract
Motivated by recent developments in theoretical physics, this thesis presents a self-contained analysis of harmonic maps and explores their modern applications in quantum mechanics, general relativity, and Yang-Mills theory.
The aim is to introduce the geometric and analytical foundations necessary to understand the structure of harmonic maps and to provide a physical motivation for their study. In particular, the combination of Riemannian geometry and the calculus of variations offers a rigorous mathematical framework to model gravitational nonlinearities and to couple Schrödinger-type equations with an extended harmonic map theory.
The project begins by laying out the necessary geometric background and analytical tools, then moves on to a broader exploration of harmonic maps and their key properties. Finally, it highlights applications in theoretical physics, along with current challenges and potential directions for future research.
Abstract
Motivated by recent developments in theoretical physics, this thesis presents a self-contained analysis of harmonic maps and explores their modern applications in quantum mechanics, general relativity, and Yang-Mills theory.
The aim is to introduce the geometric and analytical foundations necessary to understand the structure of harmonic maps and to provide a physical motivation for their study. In particular, the combination of Riemannian geometry and the calculus of variations offers a rigorous mathematical framework to model gravitational nonlinearities and to couple Schrödinger-type equations with an extended harmonic map theory.
The project begins by laying out the necessary geometric background and analytical tools, then moves on to a broader exploration of harmonic maps and their key properties. Finally, it highlights applications in theoretical physics, along with current challenges and potential directions for future research.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Merà, Martina
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
harmonic map,energy functional,euler-lagrange equations,quantum mechanics,general relativity,Yang-Mills theory
Data di discussione della Tesi
26 Settembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Merà, Martina
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
harmonic map,energy functional,euler-lagrange equations,quantum mechanics,general relativity,Yang-Mills theory
Data di discussione della Tesi
26 Settembre 2025
URI
Statistica sui download
Gestione del documento: