Development of new approaches for generating synthetic diffusion gradient directions in diffusion tensor imaging

Santoro, Simone (2025) Development of new approaches for generating synthetic diffusion gradient directions in diffusion tensor imaging. [Laurea magistrale], Università di Bologna, Corso di Studio in Physics [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text non accessibile fino al 3 Settembre 2027.
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (5MB) | Contatta l'autore

Abstract

Magnetic Resonance Imaging (MRI) is a widely used tool in neuroscience and clinical practice, with Diffusion-Weighted Imaging (DWI) offering detailed information about tissue microstructure. Diffusion Tensor Imaging (DTI) models diffusion as a tensor, which allows for quantitative assessment of tissue organization and connectivity. However, DTI requires lengthy acquisitions with numerous gradient directions and amplitudes, limiting its clinical applicability. This thesis examines the application of deep learning to synthetically reconstruct missing diffusion directions, thereby enriching incomplete datasets and reducing acquisition times. A conditional Generative Adversarial Network (cGAN) based on the Pix2Pix framework was implemented and trained on single-shell and multi-shell datasets acquired at the Oxford Centre for Magnetic Resonance (OCMR). Model performance was assessed using image similarity metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), as well as by comparing diffusion tensor-derived maps across selected brain regions. The networks produced realistic synthetic images, and the resulting diffusion metrics closely matched ground truth values, as confirmed by Bland–Altman analysis. The models accurately reconstructed 20% of missing directions in single-shell data and 18% in multi-shell data. These findings indicate that generative Artificial Intelligence methods can accelerate diffusion MRI, increase efficiency, and support broader adoption of advanced diffusion methods in research and clinical contexts.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Santoro, Simone
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Applied Physics
Ordinamento Cds
DM270
Parole chiave
Artificial Intelligence,Magnetic Resonance Imaging,Diffusion Tensor Imaging,GANs,Pix2Pix,Diffussion Weighted Imaging,Deep Learning
Data di discussione della Tesi
26 Settembre 2025
URI

Altri metadati

Gestione del documento: Visualizza il documento

^