Lagay, Maxim
(2025)
Minimum length scale from graviton propagator.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Physics [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (544kB)
| Contatta l'autore
|
Abstract
Many approaches to quantum gravity predict the existence of a fundamental minimum length. In this work we distinguish between the minimum geometrical length and the minimum length scale, and explore how they arise from graviton propagators subject to different boundary conditions. We show that in-in propagators allow one to calculate the minimum geometrical length as the expectation value of the proper distance, and that it vanishes to all orders of metric perturbations in a non-interacting theory. After incorporating a one-loop correction to the graviton propagator, this outcome remains unchanged at second order in perturbation theory. In contrast, we find that the minimum length scale, defined by in-out expectation values and interpreted as the scale of scattering processes, is non-vanishing. Treating general relativity as an effective field theory, we establish that this scale is of Planckian order both in the free theory and after including the one-loop correction to the graviton propagator.
Abstract
Many approaches to quantum gravity predict the existence of a fundamental minimum length. In this work we distinguish between the minimum geometrical length and the minimum length scale, and explore how they arise from graviton propagators subject to different boundary conditions. We show that in-in propagators allow one to calculate the minimum geometrical length as the expectation value of the proper distance, and that it vanishes to all orders of metric perturbations in a non-interacting theory. After incorporating a one-loop correction to the graviton propagator, this outcome remains unchanged at second order in perturbation theory. In contrast, we find that the minimum length scale, defined by in-out expectation values and interpreted as the scale of scattering processes, is non-vanishing. Treating general relativity as an effective field theory, we establish that this scale is of Planckian order both in the free theory and after including the one-loop correction to the graviton propagator.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Lagay, Maxim
Relatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
General relativity,Quantum gravity,Minimum length scale,Propagator,One-loop corrections,Källén–Lehmann spectral representation,Planck scale,In-in formalism
Data di discussione della Tesi
26 Settembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Lagay, Maxim
Relatore della tesi
Scuola
Corso di studio
Indirizzo
THEORETICAL PHYSICS
Ordinamento Cds
DM270
Parole chiave
General relativity,Quantum gravity,Minimum length scale,Propagator,One-loop corrections,Källén–Lehmann spectral representation,Planck scale,In-in formalism
Data di discussione della Tesi
26 Settembre 2025
URI
Statistica sui download
Gestione del documento: