Design and Implementation of an AI-based Web Application for Clinical Report Generation

Rossi, Alessandro (2025) Design and Implementation of an AI-based Web Application for Clinical Report Generation. [Laurea magistrale], Università di Bologna, Corso di Studio in Biomedical engineering [LM-DM270] - Cesena, Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (11MB) | Contatta l'autore

Abstract

In recent years, healthcare has increasingly demanded digital tools capable of optimizing internal processes through improved coordination, data centralization, and automation of management processes. However, many healthcare realities often still rely on non-digital, outdated and non-integrated systems for managing core clinical components which form the backbone of daily hospital operations and constitute the essential units around which clinical and administrative workflows orbit. The use of such inefficient systems leads to inefficiencies, communication issues and administrative burdens, which become particularly problematic for complex cross-entity functions like appointment scheduling. Additionally, the still limited adoption of structured clinical reporting, especially in radiology, further reduces clinical workflow efficiency and healthcare outcomes. Structured reporting enhances clarity, consistency, and clinical value but remains underutilized due to its rigidity and time-consuming nature caused by limited automation. This dissertation presents 2GEN4MED, a digital application designed to address these challenges by providing an integrated management tool for key clinical entities and enabling the guided and semi-automatic generation of structured medical reports through generative artificial intelligence models. Focusing on the growing clinical demand for cardiac magnetic resonance imaging, particularly in the context of ischemic cardiomyopathies, the application generates structured reports in compliance with the internationally recognized guideline issued by the Society for Cardiovascular Magnetic Resonance aiming to automate and simplify structured report formation, enhancing speed and standardization. Ultimately, this work demonstrates how integrating AI within a user-friendly digital platform can streamline clinical workflows and contribute to better patient outcomes by enabling the consistent and efficient generation of structured medical reports.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Rossi, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INNOVATIVE TECHNOLOGIES IN DIAGNOSTICS AND THERAPY
Ordinamento Cds
DM270
Parole chiave
Management,Platform,Generative,AI,Structured,Reporting,Cardiac,Magnetic,Resonance,Radiology
Data di discussione della Tesi
26 Settembre 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^