Caneti, Enrico
(2025)
Viscosity solutions for PDEs.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
This thesis deals with the theory of \textit{viscosity solutions}, a powerful and elegant framework for analyzing partial differential equations (PDEs) that may not admit solutions in the classical sense. The need for such a theory arises naturally when dealing with nonlinear PDEs, where traditional notions of solutions—requiring a certain degree of smoothness—often fall short. Viscosity solutions provide a robust weak solution concept that prioritizes the local geometric behavior of the function, allowing for a much broader and more flexible analysis.
Abstract
This thesis deals with the theory of \textit{viscosity solutions}, a powerful and elegant framework for analyzing partial differential equations (PDEs) that may not admit solutions in the classical sense. The need for such a theory arises naturally when dealing with nonlinear PDEs, where traditional notions of solutions—requiring a certain degree of smoothness—often fall short. Viscosity solutions provide a robust weak solution concept that prioritizes the local geometric behavior of the function, allowing for a much broader and more flexible analysis.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Caneti, Enrico
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
Visocsity solutions,PDEs,Analysis,Laplace,Heat equation,Dirichlet Problem,Weak solutions,Free Boundary problems,Eilkonal Equation
Data di discussione della Tesi
26 Settembre 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Caneti, Enrico
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
Visocsity solutions,PDEs,Analysis,Laplace,Heat equation,Dirichlet Problem,Weak solutions,Free Boundary problems,Eilkonal Equation
Data di discussione della Tesi
26 Settembre 2025
URI
Gestione del documento: