Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
|
Abstract
Fantasy sports have become a fertile ground for applying advanced analytics and optimization tech-
niques. This thesis explores the development of a machine learning and operations research pipeline for
optimizing team selection in the Fantasy Premier League (FPL). Using historical data, we first train
predictive models to estimate player performances. These predictions are then embedded in Mixed
Integer Programming (MIP) formulations to select optimal squads under realistic FPL constraints. We
further refine our approach by incorporating weekly updates, market dynamics, and captain selection
strategies. The results demonstrate that combining predictive analytics with mathematical optimiza-
tion significantly improves final season scores compared to heuristic or greedy approaches. This study
showcases the synergy between data-driven modeling and decision-making under uncertainty, with
potential applications extending beyond fantasy sports.
Abstract
Fantasy sports have become a fertile ground for applying advanced analytics and optimization tech-
niques. This thesis explores the development of a machine learning and operations research pipeline for
optimizing team selection in the Fantasy Premier League (FPL). Using historical data, we first train
predictive models to estimate player performances. These predictions are then embedded in Mixed
Integer Programming (MIP) formulations to select optimal squads under realistic FPL constraints. We
further refine our approach by incorporating weekly updates, market dynamics, and captain selection
strategies. The results demonstrate that combining predictive analytics with mathematical optimiza-
tion significantly improves final season scores compared to heuristic or greedy approaches. This study
showcases the synergy between data-driven modeling and decision-making under uncertainty, with
potential applications extending beyond fantasy sports.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Santoro, Lorenzo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Fantasy Premier League, Machine Learning, optimization, Mixed Integer Programming, Time Series Forecasting, Feature Engineering, Greedy Algorithm
Data di discussione della Tesi
21 Luglio 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Santoro, Lorenzo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Fantasy Premier League, Machine Learning, optimization, Mixed Integer Programming, Time Series Forecasting, Feature Engineering, Greedy Algorithm
Data di discussione della Tesi
21 Luglio 2025
URI
Statistica sui download
Gestione del documento: