Valentini, Maria Letizia
(2025)
A Multi-Method Approach to membership selection in Ultra-Faint Dwarf Galaxies: The role of RR Lyrae Stars.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Astrophysics and cosmology [LM-DM270]
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (12MB)
|
Abstract
The formation of the Milky Way (MW) and its stellar halo remains a fundamental open problem in astrophysics. In recent decades, deep wide-field surveys have revealed numerous ultra-faint dwarf galaxies (UFDs) around the MW - stellar systems much smaller and fainter than the classical dwarfs such as Draco, Fornax, and Leo I. UFDs typically host old, metal-poor stellar populations, similar to those in the Galactic halo, suggesting a potential evolutionary link. RR Lyrae stars, as pulsating variables tracing ancient, metal-poor populations, are powerful tools for investigating the structure and content of UFDs. The ESA’s Gaia mission has revolutionised this field by delivering all-sky, high-precision astrometric and photometric data, enabling the detection and characterisation of RR Lyrae stars even in the sparse environments of UFDs. This thesis analyses six UFD galaxies using Gaia Data Release 3 (DR3), with the aim of identifying likely RR Lyrae members. Two complementary approaches are employed: a classical method based on proper motion selection, colour-magnitude diagrams, and the Period-Wesenheit-Metallicity (PWZ) relation; and a statistical method using machine learning clustering algorithms to associate stars with their host systems based on astrometric and photometric properties. This dual strategy enhances membership reliability and demonstrates the value of machine learning in astronomical classification tasks. The thesis is organised as follows: Chapter 1 introduces the scientific context; Chapter 2 details the methodology; Chapter 3 presents results for Boötes I, Boötes III, Carina II, Coma Berenices, Sagittarius II, and Ursa Major I; Chapter 4 concludes with future prospects.
Abstract
The formation of the Milky Way (MW) and its stellar halo remains a fundamental open problem in astrophysics. In recent decades, deep wide-field surveys have revealed numerous ultra-faint dwarf galaxies (UFDs) around the MW - stellar systems much smaller and fainter than the classical dwarfs such as Draco, Fornax, and Leo I. UFDs typically host old, metal-poor stellar populations, similar to those in the Galactic halo, suggesting a potential evolutionary link. RR Lyrae stars, as pulsating variables tracing ancient, metal-poor populations, are powerful tools for investigating the structure and content of UFDs. The ESA’s Gaia mission has revolutionised this field by delivering all-sky, high-precision astrometric and photometric data, enabling the detection and characterisation of RR Lyrae stars even in the sparse environments of UFDs. This thesis analyses six UFD galaxies using Gaia Data Release 3 (DR3), with the aim of identifying likely RR Lyrae members. Two complementary approaches are employed: a classical method based on proper motion selection, colour-magnitude diagrams, and the Period-Wesenheit-Metallicity (PWZ) relation; and a statistical method using machine learning clustering algorithms to associate stars with their host systems based on astrometric and photometric properties. This dual strategy enhances membership reliability and demonstrates the value of machine learning in astronomical classification tasks. The thesis is organised as follows: Chapter 1 introduces the scientific context; Chapter 2 details the methodology; Chapter 3 presents results for Boötes I, Boötes III, Carina II, Coma Berenices, Sagittarius II, and Ursa Major I; Chapter 4 concludes with future prospects.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Valentini, Maria Letizia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
ultra-faint dwarf galaxies RR Lyrae ESA Gaia mission machine learning proper motions color-magnitude diagram period-Wesenheit-metallicity relation
Data di discussione della Tesi
18 Luglio 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Valentini, Maria Letizia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
ultra-faint dwarf galaxies RR Lyrae ESA Gaia mission machine learning proper motions color-magnitude diagram period-Wesenheit-metallicity relation
Data di discussione della Tesi
18 Luglio 2025
URI
Statistica sui download
Gestione del documento: