Assessing the Feasibility of Retrieval Augmented Generation for Materiality Analysis

Gherghescu, Andreea Diana (2025) Assessing the Feasibility of Retrieval Augmented Generation for Materiality Analysis. [Laurea magistrale], Università di Bologna, Corso di Studio in Digital transformation management [LM-DM270] - Cesena, Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text non accessibile fino al 31 Luglio 2028.
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 4.0 (CC BY-NC-ND 4.0)

Download (904kB) | Contatta l'autore

Abstract

Materiality assessment plays a critical role in sustainability reporting by identifying and prioritizing the most significant topics relevant to an organization and its stakeholders. As companies face increasing pressure to provide transparent and accountable disclosures, especially regarding environmental, social, and governance (ESG) issues, efficient and accurate materiality evaluations have become essential. This project focuses on prototyping and validating a scalable, automated framework that leverages a retrieval-augmented generation (RAG) approach to identify and rank material topics. By combining quantitative metrics and strong comparison methods, this approach aims to enhance the consistency and reliability of materiality rankings. This will ultimately help in making better decisions for sustainable business practices.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Gherghescu, Andreea Diana
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Materiality,Reporting,Sustainability,bigdata,RAG
Data di discussione della Tesi
16 Luglio 2025
URI

Altri metadati

Gestione del documento: Visualizza il documento

^