Smith, Evanne Marie Claire
(2025)
The Dimension of Linear Systems on Weighted Projective Varieties.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
Weighted projective varieties generalize classical projective geometry by introducing non-uniform scaling. This thesis investigates the dimension of linear systems on such varieties, with a focus on weight reduction techniques and the Veronese embedding. We explore the algebraic and geometric structures arising from weighted polynomial rings, demonstrating how weight reduction leads to well-formed spaces that simplify calculations without altering the underlying variety. A central result provides an explicit formula for the dimension of spaces of weighted homogeneous polynomials, the linear system, of a given degree — a generalization of the classical projective case. We implement this formula computationally, developing a Python-based tool set for practical computations on weighted projective varieties. The thesis culminates in applications to linear systems, illustrating how the theoretical framework connects to concrete examples and embeddings.
Abstract
Weighted projective varieties generalize classical projective geometry by introducing non-uniform scaling. This thesis investigates the dimension of linear systems on such varieties, with a focus on weight reduction techniques and the Veronese embedding. We explore the algebraic and geometric structures arising from weighted polynomial rings, demonstrating how weight reduction leads to well-formed spaces that simplify calculations without altering the underlying variety. A central result provides an explicit formula for the dimension of spaces of weighted homogeneous polynomials, the linear system, of a given degree — a generalization of the classical projective case. We implement this formula computationally, developing a Python-based tool set for practical computations on weighted projective varieties. The thesis culminates in applications to linear systems, illustrating how the theoretical framework connects to concrete examples and embeddings.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Smith, Evanne Marie Claire
Relatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
weighted projective space,linear systems,dimension,algebraic geometry
Data di discussione della Tesi
27 Marzo 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Smith, Evanne Marie Claire
Relatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM ADVANCED MATHEMATICS FOR APPLICATIONS
Ordinamento Cds
DM270
Parole chiave
weighted projective space,linear systems,dimension,algebraic geometry
Data di discussione della Tesi
27 Marzo 2025
URI
Gestione del documento: