Candeletti, Federico
(2025)
An Analytic Approach to Complex Tori.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (681kB)
| Contatta l'autore
|
Abstract
Compact complex manifolds, unlike algebraic varieties, do not always admit a holomorphic embedding into a projective space. When this is possibile they are called projective, implying the existence of a positive definite integral Kähler form, which corresponds to the pullback of the Fubini-Study form on the projective space.
This thesis focuses on three different approaches to find a holomorphic embedding in the context of complex tori: theta functions, holomorphic line bundles, and multiplier ideal sheaves. A complex torus that embeds into a projective space is known as an abelian variety.
The first approach focuses on theta functions and their Riemann form, which corresponds to the integral Kähler form. These functions are fundamental to construct meromorphic functions on complex tori. In the second approach the framework of holomorphic line bundles is introduced. The connection with theta functions is extensively used in the Appell-Humbert Theorem and the Lefschetz Theorem. The third approach adopts a more modern perspective based on J.P. Demailly's work, using multiplier ideal sheaves. They provide a powerful analytic tool to obtain vanishing theorems and study embeddings. This approach extends beyond complex tori to general compact complex manifolds, recovering the Kodaira Embedding Theorem.
Abstract
Compact complex manifolds, unlike algebraic varieties, do not always admit a holomorphic embedding into a projective space. When this is possibile they are called projective, implying the existence of a positive definite integral Kähler form, which corresponds to the pullback of the Fubini-Study form on the projective space.
This thesis focuses on three different approaches to find a holomorphic embedding in the context of complex tori: theta functions, holomorphic line bundles, and multiplier ideal sheaves. A complex torus that embeds into a projective space is known as an abelian variety.
The first approach focuses on theta functions and their Riemann form, which corresponds to the integral Kähler form. These functions are fundamental to construct meromorphic functions on complex tori. In the second approach the framework of holomorphic line bundles is introduced. The connection with theta functions is extensively used in the Appell-Humbert Theorem and the Lefschetz Theorem. The third approach adopts a more modern perspective based on J.P. Demailly's work, using multiplier ideal sheaves. They provide a powerful analytic tool to obtain vanishing theorems and study embeddings. This approach extends beyond complex tori to general compact complex manifolds, recovering the Kodaira Embedding Theorem.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Candeletti, Federico
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
complex tori,theta function,abelian varieties,Kodaira embedding,multiplier ideal sheaves
Data di discussione della Tesi
27 Marzo 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Candeletti, Federico
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum Generale
Ordinamento Cds
DM270
Parole chiave
complex tori,theta function,abelian varieties,Kodaira embedding,multiplier ideal sheaves
Data di discussione della Tesi
27 Marzo 2025
URI
Statistica sui download
Gestione del documento: