Iezzi, Francesco
(2025)
Pricing CAT futures in a stochastic volatility setting: an extension to the Italian weather market.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Greening energy market and finance [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
| Contatta l'autore
|
Abstract
This thesis develops a pricing framework for Cumulative Average Temperature (CAT) futures in the context of stochastic volatility and applies it to the Italian weather market. The study extends existing models by incorporating a seasonal stochastic volatility component using the Barndorff-Nielsen and Shephard (BNS) model and develops a new class of risk-neutral measures using a combination of the Esscher and Girsanov transforms. An empirical analysis is conducted using temperature data from four Italian cities, and a simulation is performed to derive prices for synthetic CAT futures contracts. The proposed model is demonstrated to successfully capture the seasonal dynamics and volatility observed in temperature data, thereby providing a robust tool for the hedging of temperature risks, particularly in the context of rising climate uncertainty.
Abstract
This thesis develops a pricing framework for Cumulative Average Temperature (CAT) futures in the context of stochastic volatility and applies it to the Italian weather market. The study extends existing models by incorporating a seasonal stochastic volatility component using the Barndorff-Nielsen and Shephard (BNS) model and develops a new class of risk-neutral measures using a combination of the Esscher and Girsanov transforms. An empirical analysis is conducted using temperature data from four Italian cities, and a simulation is performed to derive prices for synthetic CAT futures contracts. The proposed model is demonstrated to successfully capture the seasonal dynamics and volatility observed in temperature data, thereby providing a robust tool for the hedging of temperature risks, particularly in the context of rising climate uncertainty.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Iezzi, Francesco
Relatore della tesi
Scuola
Corso di studio
Indirizzo
ENVIRONMENTAL FINANCE
Ordinamento Cds
DM270
Parole chiave
Weather derivatives, Financial mathematics, CAT, BNS, Esscher, Girsanov, Time series, Climate change
Data di discussione della Tesi
27 Marzo 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Iezzi, Francesco
Relatore della tesi
Scuola
Corso di studio
Indirizzo
ENVIRONMENTAL FINANCE
Ordinamento Cds
DM270
Parole chiave
Weather derivatives, Financial mathematics, CAT, BNS, Esscher, Girsanov, Time series, Climate change
Data di discussione della Tesi
27 Marzo 2025
URI
Statistica sui download
Gestione del documento: