A multi-view dataset for multimodal Anomaly Detection and Segmentation

Gasperini, Lucia (2025) A multi-view dataset for multimodal Anomaly Detection and Segmentation. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (3MB) | Contatta l'autore

Abstract

Anomaly detection is crucial in fields like industrial quality control and defect detection, helping identify deviations from expected behavior to ensure product reliability and safety. Traditional approaches typically rely on datasets, like Eyecandies, MVTec AD and MVTec 3D-AD, that focus on single-modal data or limited multimodal data, which may not be sufficient for detecting complex structural defects. To overcome these limitations, this thesis presents the development of a novel multi-view and multimodal dataset for anomaly detection and segmentation, integrating grayscale images, depth maps and 3D point clouds. Designed as a benchmark for multimodal anomaly detection models, the dataset addresses existing limitations while enabling more robust and generalizable methods. It includes diverse object categories, representing various materials and manufacturing conditions, providing a strong foundation for evaluating anomaly detection algorithms in practical settings. The dataset was collected using a high-precision ATOS Q structured-light 3D scanner in combination with a FANUC robotic arm, ensuring consistency and accuracy across multiple viewpoints. The dataset comprises both real and synthetic samples, where real-world acquisitions, part of this thesis, provide high-fidelity ground truth data and synthetic samples complement the dataset under controlled conditions to improve variability and generalization. This thesis also establishes a standardized data acquisition pipeline for extracting images, STL files and positional data relative to the camera, incorporating calibration processes and manual labeling techniques, ensuring reproducibility. Furthermore, it explores anomaly detection techniques, focusing on PatchCore, a memory-based method for image anomaly detection, and an HHA-based approach that enhances depth features, with a baseline evaluation conducted to validate the dataset and assess performance through AUROC and AUPRO metrics.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Gasperini, Lucia
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Anomaly Detection, Anomaly Segmentation, HHA, Patchcore, Memory Bank, Multiview, Multimodal, Dataset
Data di discussione della Tesi
25 Marzo 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^