Trambaiollo, Luca
(2025)
Predictive and Prescriptive Models for playtime allocation of football players and its impact on their development.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Artificial intelligence [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (3MB)
| Contatta l'autore
|
Abstract
This thesis explores the development of predictive and prescriptive models aimed at optimising the allocation of playtime for professional football players, with a focus on their performance and development. Leveraging machine learning models and optimisation technique, the study builds a framework that forecasts both the number of minutes players will play and their corresponding SciSkill, a key performance indicator (KPI), development over the following year. By incorporating contextual factors such as team attributes and individual player features, the research aims to assist football technical directors and coaches in making data-driven decisions regarding player acquisitions, sales, playtime distribution with its corresponding KPI values development. The project integrates historical player performance data to create a comprehensive tool for maximising squad development. The results highlight the importance of optimal playtime allocation to maximise team development, offering insights into the impact with the addition of new players and/or the remotion of some others.
Abstract
This thesis explores the development of predictive and prescriptive models aimed at optimising the allocation of playtime for professional football players, with a focus on their performance and development. Leveraging machine learning models and optimisation technique, the study builds a framework that forecasts both the number of minutes players will play and their corresponding SciSkill, a key performance indicator (KPI), development over the following year. By incorporating contextual factors such as team attributes and individual player features, the research aims to assist football technical directors and coaches in making data-driven decisions regarding player acquisitions, sales, playtime distribution with its corresponding KPI values development. The project integrates historical player performance data to create a comprehensive tool for maximising squad development. The results highlight the importance of optimal playtime allocation to maximise team development, offering insights into the impact with the addition of new players and/or the remotion of some others.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Trambaiollo, Luca
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
machine learning, optimization, framework, novel, football, soccer, professional football, playtime, KPI, regression
Data di discussione della Tesi
25 Marzo 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Trambaiollo, Luca
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
machine learning, optimization, framework, novel, football, soccer, professional football, playtime, KPI, regression
Data di discussione della Tesi
25 Marzo 2025
URI
Statistica sui download
Gestione del documento: