Autonomous Vehicle Guidance in Industrial Settings: Dataset Acquisitions via Unity-based Simulation Environments

Zanini, Federico (2025) Autonomous Vehicle Guidance in Industrial Settings: Dataset Acquisitions via Unity-based Simulation Environments. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria informatica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (14MB) | Contatta l'autore

Abstract

This thesis proposes a comprehensive framework for acquiring large-scale, semantically annotated datasets in industrial contexts using a Unity-based simulation environment closely integrated with the Robot Operating System (ROS). The work addresses the growing demands of autonomous driving research, where scalable data generation and robust domain coverage are key to developing high-performing perception modules. By precisely reconstructing an industrial yard at 1:1 scale and combining random object spawning, the simulator can emulate realistic, variable conditions while maintaining full control over scene geometry and class labels. In parallel, a specialized ROS node autonomously selects and publishes navigation goals, enabling the simulated vehicle to traverse diverse routes without manual intervention, thus accelerating data collection. A custom editor script in Unity streamlines the assignment of semantic classes to each virtual asset, guaranteeing the immediate generation of labeled LiDAR point clouds following the SemanticKITTI format. Additionally, performance bottlenecks in Unity–ROS communication, common when transferring dense sensor data, are mitigated by using a TCP-based connector instead of WebSocket-based solutions, significantly improving throughput. Experimental evaluations demonstrate that combining real and synthetic datasets is a viable solution in order to train a segmentation network. While synthetic data alone achieves reliable results, the inclusion of real-world samples further refines performance, suggesting that large-scale simulation can effectively supplement or partially replace field-based acquisitions. The methodology ultimately points toward safer and cost-effective development cycles for autonomous vehicle guidance systems in both controlled and open environments.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Zanini, Federico
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Autonomous Driving, ROS, Semantic Segmentation, Industrial Environments, unity, simulation, Synthetic Datasets
Data di discussione della Tesi
25 Marzo 2025
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^