Magnani, Leonardo David Matteo
(2025)
Legal Lay Summarization: Exploring Techniques and Introducing the LegalEase Dataset.
[Laurea], Università di Bologna, Corso di Studio in
Ingegneria e scienze informatiche [L-DM270] - Cesena, Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
This thesis investigates advancements in Natural Language Processing (NLP) for legal lay summarization by systematically analyzing the methodologies, datasets, and research findings presented in existing publications. The study reviews the current literature in the field, highlighting challenges in legal summarization, such as data scarcity and the complexity of legal language. A key contribution of this work is the creation of a specialized dataset, \textbf{LegalEase}, which is specifically designed to enhance model training for summarizing legal documents in layman’s terms.
Key findings demonstrate that subdomain-specific datasets within the legal domain outperform more general legal domain datasets in enhancing the performance of NLP models in generating accurate and comprehensible legal summaries. The results presented in this thesis offer valuable insights and methodologies for future advancements in legal lay summarization.
Abstract
This thesis investigates advancements in Natural Language Processing (NLP) for legal lay summarization by systematically analyzing the methodologies, datasets, and research findings presented in existing publications. The study reviews the current literature in the field, highlighting challenges in legal summarization, such as data scarcity and the complexity of legal language. A key contribution of this work is the creation of a specialized dataset, \textbf{LegalEase}, which is specifically designed to enhance model training for summarizing legal documents in layman’s terms.
Key findings demonstrate that subdomain-specific datasets within the legal domain outperform more general legal domain datasets in enhancing the performance of NLP models in generating accurate and comprehensible legal summaries. The results presented in this thesis offer valuable insights and methodologies for future advancements in legal lay summarization.
Tipologia del documento
Tesi di laurea
(Laurea)
Autore della tesi
Magnani, Leonardo David Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Natural Language Processing (NLP),Legal Lay Summarization (LLS),Text Simplification,Abstractive Summarization,Artificial Dataset Creation
Data di discussione della Tesi
14 Marzo 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Magnani, Leonardo David Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Natural Language Processing (NLP),Legal Lay Summarization (LLS),Text Simplification,Abstractive Summarization,Artificial Dataset Creation
Data di discussione della Tesi
14 Marzo 2025
URI
Gestione del documento: