Managing of artifacts in cardiovascular time series from photoplethysmographic signals

Spezi, Sara (2025) Managing of artifacts in cardiovascular time series from photoplethysmographic signals. [Laurea magistrale], Università di Bologna, Corso di Studio in Biomedical engineering [LM-DM270] - Cesena, Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text non accessibile fino al 29 Gennaio 2026.
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 4.0 (CC BY-NC-ND 4.0)

Download (3MB) | Contatta l'autore
[thumbnail of Supplementary file] Documento PDF (Supplementary file)
Full-text non accessibile fino al 29 Gennaio 2026.
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (308kB) | Contatta l'autore

Abstract

Photoplethysmography (PPG) is widely used in clinical and consumer devices for its non-invasive and cost-effective nature. PPG signals from wearable devices can provide valuable insights into cardiovascular and respiratory functions in the real-world. However, their accuracy depends on signal quality, which decreases while moving. Several methods, including rule-based approaches and machine learning techniques, have been proposed for detecting noise-corrupted segments.This study systematically reviewed (n = 51) and benchmarked (n = 5) algorithms for artifact detection in PPG signals. A benchmark dataset was created from the publicly available PPG-DaLiA dataset, and algorithms were evaluated using a leave-one-subject-out cross-validation. A novel algorithm was implemented, based on the correlation between PPG beats and a template derived from "artifact-free" beats. Key performance metrics, such as accuracy, sensitivity, specificity, precision, F1-score, and Cohen’s kappa were used to compare algorithms. The systematic review revealed that 57% of the articles used proprietary datasets, over 76% of algorithms relied solely on PPG signals as input, and 73% detected artifact in time-windows of fixed length. Most algorithms (86%) produced binary outputs, indicating the presence or absence of artifacts. Only 16% of algorithms were open source, which were included in the benchmark study. The benchmark showed that machine learning-based algorithms achieve the highest performance: Tiny-PPG achieved the highest specificity (0.8701 ± 0.0448), while the pulse-SVM the highest sensitivity (0.9521 ± 0.0154). Segade demonstrated the best balance between sensitivity and precision, with an F1 score of (0.8864 ± 0.0393). This study lays the foundation for the reliable extraction of heart rate and heart rate variability parameters from real-world PPG data, enabling continuous and unobtrusive monitoring of cardiovascular health using wearable devices.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Spezi, Sara
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM INNOVATIVE TECHNOLOGIES IN DIAGNOSTICS AND THERAPY
Ordinamento Cds
DM270
Parole chiave
photoplethysmography,(PPG),artifact,detection,algorithm, evaluation,wearable,sensors,machine,learning
Data di discussione della Tesi
6 Febbraio 2025
URI

Altri metadati

Gestione del documento: Visualizza il documento

^