Documenti full-text disponibili:
      
        
          
            | ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (Thesis) Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 Download (1MB)
 | 
        
      
    
  
  
    
      Abstract
      Plastics are everywhere in our daily lives, but their durability and low recycling rates create serious environmental problems. This thesis explores how innovative multistate aluminum compounds can offer solutions by improving both polymer synthesis and recycling. Using catalysts like ferrocene-aluminum complexes, researchers can precisely control polymer structures, making it possible to create versatile multiblock copolymers and promote more sustainable "circular chemistry" practices. The experiments reveal that these catalysts can produce high-performance materials, integrate CO₂ into polymer backbones, and support chemical recycling under mild conditions. This study underscores the transformative potential of multistate catalysts to drive sustainable advancements in polymer chemistry, merging environmental stewardship with cutting-edge material science.
     
    
      Abstract
      Plastics are everywhere in our daily lives, but their durability and low recycling rates create serious environmental problems. This thesis explores how innovative multistate aluminum compounds can offer solutions by improving both polymer synthesis and recycling. Using catalysts like ferrocene-aluminum complexes, researchers can precisely control polymer structures, making it possible to create versatile multiblock copolymers and promote more sustainable "circular chemistry" practices. The experiments reveal that these catalysts can produce high-performance materials, integrate CO₂ into polymer backbones, and support chemical recycling under mild conditions. This study underscores the transformative potential of multistate catalysts to drive sustainable advancements in polymer chemistry, merging environmental stewardship with cutting-edge material science.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Mohamedinasrabadi, Ghazaleh
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          circular polymer chemistry catalyst design polymerization homopolymers multiblock copolymers ring-opening polymerization CO₂ utilization sustainable chemistry biodegradable polymers depolymerization
          
        
      
        
          Data di discussione della Tesi
          28 Gennaio 2025
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Mohamedinasrabadi, Ghazaleh
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          circular polymer chemistry catalyst design polymerization homopolymers multiblock copolymers ring-opening polymerization CO₂ utilization sustainable chemistry biodegradable polymers depolymerization
          
        
      
        
          Data di discussione della Tesi
          28 Gennaio 2025
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        