Documenti full-text disponibili:
![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) |
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (1MB)
|
Abstract
Plastics are everywhere in our daily lives, but their durability and low recycling rates create serious environmental problems. This thesis explores how innovative multistate aluminum compounds can offer solutions by improving both polymer synthesis and recycling. Using catalysts like ferrocene-aluminum complexes, researchers can precisely control polymer structures, making it possible to create versatile multiblock copolymers and promote more sustainable "circular chemistry" practices. The experiments reveal that these catalysts can produce high-performance materials, integrate CO₂ into polymer backbones, and support chemical recycling under mild conditions. This study underscores the transformative potential of multistate catalysts to drive sustainable advancements in polymer chemistry, merging environmental stewardship with cutting-edge material science.
Abstract
Plastics are everywhere in our daily lives, but their durability and low recycling rates create serious environmental problems. This thesis explores how innovative multistate aluminum compounds can offer solutions by improving both polymer synthesis and recycling. Using catalysts like ferrocene-aluminum complexes, researchers can precisely control polymer structures, making it possible to create versatile multiblock copolymers and promote more sustainable "circular chemistry" practices. The experiments reveal that these catalysts can produce high-performance materials, integrate CO₂ into polymer backbones, and support chemical recycling under mild conditions. This study underscores the transformative potential of multistate catalysts to drive sustainable advancements in polymer chemistry, merging environmental stewardship with cutting-edge material science.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Mohamedinasrabadi, Ghazaleh
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
circular polymer chemistry catalyst design polymerization homopolymers multiblock copolymers ring-opening polymerization CO₂ utilization sustainable chemistry biodegradable polymers depolymerization
Data di discussione della Tesi
28 Gennaio 2025
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Mohamedinasrabadi, Ghazaleh
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
circular polymer chemistry catalyst design polymerization homopolymers multiblock copolymers ring-opening polymerization CO₂ utilization sustainable chemistry biodegradable polymers depolymerization
Data di discussione della Tesi
28 Gennaio 2025
URI
Statistica sui download
Gestione del documento: